torch.nansum¶
- torch.nansum(input, *, dtype=None) Tensor ¶
Returns the sum of all elements, treating Not a Numbers (NaNs) as zero.
- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtype
before the operation is performed. This is useful for preventing data type overflows. Default: None.
Example:
>>> a = torch.tensor([1., 2., float('nan'), 4.]) >>> torch.nansum(a) tensor(7.)
- torch.nansum(input, dim, keepdim=False, *, dtype=None) Tensor
Returns the sum of each row of the
input
tensor in the given dimensiondim
, treating Not a Numbers (NaNs) as zero. Ifdim
is a list of dimensions, reduce over all of them.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimension(s)dim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 (orlen(dim)
) fewer dimension(s).- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtype
before the operation is performed. This is useful for preventing data type overflows. Default: None.
Example:
>>> torch.nansum(torch.tensor([1., float("nan")])) tensor(1.) >>> a = torch.tensor([[1, 2], [3., float("nan")]]) >>> torch.nansum(a) tensor(6.) >>> torch.nansum(a, dim=0) tensor([4., 2.]) >>> torch.nansum(a, dim=1) tensor([3., 3.])