torch.signal.windows.hamming¶
- torch.signal.windows.hamming(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)[source][source]¶
Computes the Hamming window.
The Hamming window is defined as follows:
The window is normalized to 1 (maximum value is 1). However, the 1 doesn’t appear if
M
is even andsym
is True.- Parameters
M (int) – the length of the window. In other words, the number of points of the returned window.
- Keyword Arguments
sym (bool, optional) – If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True.
alpha (float, optional) – The coefficient in the equation above.
beta (float, optional) – The coefficient in the equation above.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_dtype()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_device()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Return type
Examples:
>>> # Generates a symmetric Hamming window. >>> torch.signal.windows.hamming(10) tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800]) >>> # Generates a periodic Hamming window. >>> torch.signal.windows.hamming(10, sym=False) tensor([0.0800, 0.1679, 0.3979, 0.6821, 0.9121, 1.0000, 0.9121, 0.6821, 0.3979, 0.1679])