LazyBatchNorm2d¶
- class torch.nn.LazyBatchNorm2d(eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None)[source][source]¶
A
torch.nn.BatchNorm2d
module with lazy initialization.Lazy initialization is done for the
num_features
argument of theBatchNorm2d
that is inferred from theinput.size(1)
. The attributes that will be lazily initialized are weight, bias, running_mean and running_var.Check the
torch.nn.modules.lazy.LazyModuleMixin
for further documentation on lazy modules and their limitations.- Parameters
eps (float) – a value added to the denominator for numerical stability. Default: 1e-5
momentum (Optional[float]) – the value used for the running_mean and running_var computation. Can be set to
None
for cumulative moving average (i.e. simple average). Default: 0.1affine (bool) – a boolean value that when set to
True
, this module has learnable affine parameters. Default:True
track_running_stats (bool) – a boolean value that when set to
True
, this module tracks the running mean and variance, and when set toFalse
, this module does not track such statistics, and initializes statistics buffersrunning_mean
andrunning_var
asNone
. When these buffers areNone
, this module always uses batch statistics. in both training and eval modes. Default:True
- cls_to_become[source]¶
alias of
BatchNorm2d