torch.cuda.cudart¶
- torch.cuda.cudart()[source][source]¶
Retrieves the CUDA runtime API module.
This function initializes the CUDA runtime environment if it is not already initialized and returns the CUDA runtime API module (_cudart). The CUDA runtime API module provides access to various CUDA runtime functions.
- Parameters
None –
- Returns
The CUDA runtime API module (_cudart).
- Return type
module
- Raises
RuntimeError – If CUDA cannot be re-initialized in a forked subprocess.
AssertionError – If PyTorch is not compiled with CUDA support or if libcudart functions are unavailable.
- Example of CUDA operations with profiling:
>>> import torch >>> from torch.cuda import cudart, check_error >>> import os >>> >>> os.environ['CUDA_PROFILE'] = '1' >>> >>> def perform_cuda_operations_with_streams(): >>> stream = torch.cuda.Stream() >>> with torch.cuda.stream(stream): >>> x = torch.randn(100, 100, device='cuda') >>> y = torch.randn(100, 100, device='cuda') >>> z = torch.mul(x, y) >>> return z >>> >>> torch.cuda.synchronize() >>> print("====== Start nsys profiling ======") >>> check_error(cudart().cudaProfilerStart()) >>> with torch.autograd.profiler.emit_nvtx(): >>> result = perform_cuda_operations_with_streams() >>> print("CUDA operations completed.") >>> check_error(torch.cuda.cudart().cudaProfilerStop()) >>> print("====== End nsys profiling ======")
- To run this example and save the profiling information, execute:
>>> $ nvprof --profile-from-start off --csv --print-summary -o trace_name.prof -f -- python cudart_test.py
This command profiles the CUDA operations in the provided script and saves the profiling information to a file named trace_name.prof. The –profile-from-start off option ensures that profiling starts only after the cudaProfilerStart call in the script. The –csv and –print-summary options format the profiling output as a CSV file and print a summary, respectively. The -o option specifies the output file name, and the -f option forces the overwrite of the output file if it already exists.