Linear¶
- class torch.ao.nn.quantized.dynamic.Linear(in_features, out_features, bias_=True, dtype=torch.qint8)[source][source]¶
A dynamic quantized linear module with floating point tensor as inputs and outputs. We adopt the same interface as torch.nn.Linear, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
Similar to
torch.nn.Linear
, attributes will be randomly initialized at module creation time and will be overwritten later- Variables
Examples:
>>> m = nn.quantized.dynamic.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30])
- classmethod from_float(mod, use_precomputed_fake_quant=False)[source][source]¶
Create a dynamic quantized module from a float module or qparams_dict
- Parameters
mod (Module) – a float module, either produced by torch.ao.quantization utilities or provided by the user
- classmethod from_reference(ref_qlinear)[source][source]¶
Create a (fbgemm/qnnpack) dynamic quantized module from a reference quantized module :param ref_qlinear: a reference quantized module, either produced by :type ref_qlinear: Module :param torch.ao.quantization functions or provided by the user: