ChainedScheduler¶
- class torch.optim.lr_scheduler.ChainedScheduler(schedulers, optimizer=None)[source][source]¶
Chains a list of learning rate schedulers.
Takes in a sequence of chainable learning rate schedulers and calls their step() functions consecutively in just one call to step().
- Parameters
schedulers (sequence) – sequence of chained schedulers.
optimizer (Optimizer, optional) – Wrapped optimizer. Default: None.
Example
>>> # Assuming optimizer uses lr = 1. for all groups >>> # lr = 0.09 if epoch == 0 >>> # lr = 0.081 if epoch == 1 >>> # lr = 0.729 if epoch == 2 >>> # lr = 0.6561 if epoch == 3 >>> # lr = 0.59049 if epoch >= 4 >>> scheduler1 = ConstantLR(optimizer, factor=0.1, total_iters=2) >>> scheduler2 = ExponentialLR(optimizer, gamma=0.9) >>> scheduler = ChainedScheduler([scheduler1, scheduler2], optimizer=optimizer) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step()
- load_state_dict(state_dict)[source][source]¶
Load the scheduler’s state.
- Parameters
state_dict (dict) – scheduler state. Should be an object returned from a call to
state_dict()
.
- print_lr(is_verbose, group, lr, epoch=None)[source]¶
Display the current learning rate.
Deprecated since version 2.4:
print_lr()
is deprecated. Please useget_last_lr()
to access the learning rate.