BasePruningMethod¶
- class torch.nn.utils.prune.BasePruningMethod[source][source]¶
Abstract base class for creation of new pruning techniques.
Provides a skeleton for customization requiring the overriding of methods such as
compute_mask()
andapply()
.- classmethod apply(module, name, *args, importance_scores=None, **kwargs)[source][source]¶
Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask.
- Parameters
module (nn.Module) – module containing the tensor to prune
name (str) – parameter name within
module
on which pruning will act.args – arguments passed on to a subclass of
BasePruningMethod
importance_scores (torch.Tensor) – tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the parameter will be used in its place.
kwargs – keyword arguments passed on to a subclass of a
BasePruningMethod
- apply_mask(module)[source][source]¶
Simply handles the multiplication between the parameter being pruned and the generated mask.
Fetches the mask and the original tensor from the module and returns the pruned version of the tensor.
- Parameters
module (nn.Module) – module containing the tensor to prune
- Returns
pruned version of the input tensor
- Return type
pruned_tensor (torch.Tensor)
- abstract compute_mask(t, default_mask)[source][source]¶
Compute and returns a mask for the input tensor
t
.Starting from a base
default_mask
(which should be a mask of ones if the tensor has not been pruned yet), generate a random mask to apply on top of thedefault_mask
according to the specific pruning method recipe.- Parameters
t (torch.Tensor) – tensor representing the importance scores of the
prune. (parameter to) –
default_mask (torch.Tensor) – Base mask from previous pruning
iterations –
is (that need to be respected after the new mask) –
t. (applied. Same dims as) –
- Returns
mask to apply to
t
, of same dims ast
- Return type
mask (torch.Tensor)
- prune(t, default_mask=None, importance_scores=None)[source][source]¶
Compute and returns a pruned version of input tensor
t
.According to the pruning rule specified in
compute_mask()
.- Parameters
t (torch.Tensor) – tensor to prune (of same dimensions as
default_mask
).importance_scores (torch.Tensor) – tensor of importance scores (of same shape as
t
) used to compute mask for pruningt
. The values in this tensor indicate the importance of the corresponding elements in thet
that is being pruned. If unspecified or None, the tensort
will be used in its place.default_mask (torch.Tensor, optional) – mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones.
- Returns
pruned version of tensor
t
.
- remove(module)[source][source]¶
Remove the pruning reparameterization from a module.
The pruned parameter named
name
remains permanently pruned, and the parameter namedname+'_orig'
is removed from the parameter list. Similarly, the buffer namedname+'_mask'
is removed from the buffers.Note
Pruning itself is NOT undone or reversed!