SELU¶
- class torch.nn.SELU(inplace=False)[source][source]¶
Applies the SELU function element-wise.
with and .
Warning
When using
kaiming_normal
orkaiming_normal_
for initialisation,nonlinearity='linear'
should be used instead ofnonlinearity='selu'
in order to get Self-Normalizing Neural Networks. Seetorch.nn.init.calculate_gain()
for more information.More details can be found in the paper Self-Normalizing Neural Networks .
- Parameters
inplace (bool, optional) – can optionally do the operation in-place. Default:
False
- Shape:
Input: , where means any number of dimensions.
Output: , same shape as the input.
Examples:
>>> m = nn.SELU() >>> input = torch.randn(2) >>> output = m(input)