Shortcuts

ConvBnReLU2d

class torch.ao.nn.intrinsic.qat.ConvBnReLU2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros', eps=1e-05, momentum=0.1, freeze_bn=False, qconfig=None)[source][source]

A ConvBnReLU2d module is a module fused from Conv2d, BatchNorm2d and ReLU, attached with FakeQuantize modules for weight, used in quantization aware training.

We combined the interface of torch.nn.Conv2d and torch.nn.BatchNorm2d and torch.nn.ReLU.

Similar to torch.nn.Conv2d, with FakeQuantize modules initialized to default.

Variables

weight_fake_quant – fake quant module for weight

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources