AOTInductor Minifier¶
If you encounter an error while using AOT Inductor APIs such as
torch._inductor.aoti_compile_and_package
, torch._indcutor.aoti_load_package
,
or running the loaded model of aoti_load_package
on some inputs, you can use the AOTInductor Minifier
to create a minimal nn.Module that reproduce the error by setting from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True
.
One a high-level, there are two steps in using the minifier:
Set
from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True
or set the environment variableDUMP_AOTI_MINIFIER=1
. Then running the script that errors would produce aminifier_launcher.py
script. The output directory is configurable by settingtorch._dynamo.config.debug_dir_root
to a valid directory name.Run the
minifier_launcher.py
script. If the minifier runs successfully, it generates runnable python code inrepro.py
which reproduces the exact error.
Example Code¶
Here is sample code which will generate an error because we injected an error on relu with
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error"
.
import torch
from torch._inductor import config as inductor_config
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.sigmoid(x)
return x
inductor_config.aot_inductor.dump_aoti_minifier = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error"
with torch.no_grad():
model = Model().to("cuda")
example_inputs = (torch.randn(8, 10).to("cuda"),)
ep = torch.export.export(model, example_inputs)
package_path = torch._inductor.aoti_compile_and_package(ep)
compiled_model = torch._inductor.aoti_load_package(package_path)
result = compiled_model(*example_inputs)
The code above generates the following error:
RuntimeError: Failed to import /tmp/torchinductor_shangdiy/fr/cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py
SyntaxError: invalid syntax (cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py, line 29)
This is because we injected an error on relu, and so the generated triton kernel looks like below. Note that we have compile error!
instead if relu
, so we get a SyntaxError
.
@triton.jit
def triton_poi_fused_addmm_relu_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = compile error!
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
Since we have torch._inductor.config.aot_inductor.dump_aoti_minifier=True
, we also see an additional line indicating where minifier_launcher.py
has
been written to. The output directory is configurable by setting
torch._dynamo.config.debug_dir_root
to a valid directory name.
W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] Writing minified repro to:
W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_21_08_602433-pid_2861654/minifier/minifier_launcher.py
Minifier Launcher¶
The minifier_launcher.py
file has the following code. The exported_program
contains the inputs to torch._inductor.aoti_compile_and_package
.
The command='minify'
parameter means the script will run the minifier to create a minimal graph module that reproduce the error. Alternatively, you set
use command='run'
to just compile, load, and run the loaded model (without running the minifier).
import torch
import torch._inductor.inductor_prims
import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True
isolate_fails_code_str = None
# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84
# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0
# GPU Hardware Info:
# NVIDIA PG509-210 : 8
exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={}
if __name__ == '__main__':
from torch._dynamo.repro.aoti import run_repro
with torch.no_grad():
run_repro(exported_program, config_patches=config_patches, accuracy=False, command='minify', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints', check_str=None)
Suppose we kept the command='minify'
option, and run the script, we would get the following output:
...
W1031 16:48:08.938000 3598491 torch/_dynamo/repro/aoti.py:89] Writing checkpoint with 3 nodes to /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_48_02_720863-pid_3598491/minifier/checkpoints/3.py
W1031 16:48:08.975000 3598491 torch/_dynamo/repro/aoti.py:101] Copying repro file for convenience to /data/users/shangdiy/pytorch/repro.py
Wrote minimal repro out to repro.py
If you get an AOTIMinifierError
when running minifier_launcher.py
, please report a bug here.
Minified Result¶
The repro.py
looks like this. Notice that the exported program is printed at the top of the file, and it contains only the relu node. The minifier successfully reduced the graph to the op that raises the
error.
# from torch.nn import *
# class Repro(torch.nn.Module):
# def __init__(self) -> None:
# super().__init__()
# def forward(self, linear):
# relu = torch.ops.aten.relu.default(linear); linear = None
# return (relu,)
import torch
from torch import tensor, device
import torch.fx as fx
from torch._dynamo.testing import rand_strided
from math import inf
import torch._inductor.inductor_prims
import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config
torch._inductor.config.generate_intermediate_hooks = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True
isolate_fails_code_str = None
# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84
# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0
# GPU Hardware Info:
# NVIDIA PG509-210 : 8
exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_25_13_59_33_102283-pid_3658904/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={'aot_inductor.package': True}
if __name__ == '__main__':
from torch._dynamo.repro.aoti import run_repro
with torch.no_grad():
run_repro(exported_program, config_patches=config_patches, accuracy=False, command='run', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_25_13_59_33_102283-pid_3658904/minifier/checkpoints', check_str=None)