Shortcuts

AOTInductor Minifier

If you encounter an error while using AOT Inductor APIs such as torch._inductor.aoti_compile_and_package, torch._indcutor.aoti_load_package, or running the loaded model of aoti_load_package on some inputs, you can use the AOTInductor Minifier to create a minimal nn.Module that reproduce the error by setting from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True.

One a high-level, there are two steps in using the minifier:

  • Set from torch._inductor import config; config.aot_inductor.dump_aoti_minifier = True or set the environment variable DUMP_AOTI_MINIFIER=1. Then running the script that errors would produce a minifier_launcher.py script. The output directory is configurable by setting torch._dynamo.config.base_dir to a valid directory name.

  • Run the minifier_launcher.py script. If the minifier runs successfully, it generates runnable python code in repro.py which reproduces the exact error.

Here is sample code which will generate an error because we injected an error on relu with torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error".

import torch
from torch._inductor import config as inductor_config

class Model(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(10, 16)
        self.relu = torch.nn.ReLU()
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.sigmoid(x)
        return x


inductor_config.aot_inductor.dump_aoti_minifier = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = "compile_error"

with torch.no_grad():
    model = Model().to("cuda")
    example_inputs = (torch.randn(8, 10).to("cuda"),)
    ep = torch.export.export(model, example_inputs)
    package_path = torch._inductor.aoti_compile_and_package(ep)
    compiled_model = torch._inductor.aoti_load_package(package_path)
    result = compiled_model(*example_inputs)

The code above generates the following error:

RuntimeError: Failed to import /tmp/torchinductor_shangdiy/fr/cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py
SyntaxError: invalid syntax (cfrlf4smkwe4lub4i4cahkrb3qiczhf7hliqqwpewbw3aplj5g3s.py, line 29)

This is because we injected an error on relu, and so the generated triton kernel looks like below. Note that we have compile error! instead if relu, so we get a SyntaxError.

@triton.jit
def triton_poi_fused_addmm_relu_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
    xnumel = 128
    xoffset = tl.program_id(0) * XBLOCK
    xindex = xoffset + tl.arange(0, XBLOCK)[:]
    xmask = xindex < xnumel
    x2 = xindex
    x0 = xindex % 16
    tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
    tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
    tmp2 = tmp0 + tmp1
    tmp3 = compile error!
    tmp4 = tl.sigmoid(tmp3)
    tl.store(in_out_ptr0 + (x2), tmp4, xmask)

Since we have torch._inductor.config.aot_inductor.dump_aoti_minifier=True, we also see an additional line indicating where minifier_launcher.py has been written to. The output directory is configurable by setting torch._dynamo.config.base_dir to a valid directory name.

W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] Writing minified repro to:
W1031 16:21:08.612000 2861654 pytorch/torch/_dynamo/debug_utils.py:279] /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_21_08_602433-pid_2861654/minifier/minifier_launcher.py

The minifier_launcher.py file has the following code. The exported_program contains the inputs to torch._inductor.aoti_compile_and_package. The command='minify' parameter means the script will run the minifier to create a minimal graph module that reproduce the error. Alternatively, you set use command='run' to just compile, load, and run the loaded model (without running the minifier).

import torch
import torch._inductor.inductor_prims

import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config

torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True




isolate_fails_code_str = None



# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84


# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0

# GPU Hardware Info:
# NVIDIA PG509-210 : 8

exported_program = torch.export.load('/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints/exported_program.pt2')
# print(exported_program.graph)
config_patches={}
if __name__ == '__main__':
    from torch._dynamo.repro.aoti import run_repro
    with torch.no_grad():
        run_repro(exported_program, config_patches=config_patches, accuracy=False, command='minify', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_13_52_35_711642-pid_3567062/minifier/checkpoints', check_str=None)

Suppose we kept the command='minify' option, and run the script, we would get the following output:

...
W1031 16:48:08.938000 3598491 torch/_dynamo/repro/aoti.py:89] Writing checkpoint with 3 nodes to /data/users/shangdiy/pytorch/torch_compile_debug/run_2024_10_31_16_48_02_720863-pid_3598491/minifier/checkpoints/3.py
W1031 16:48:08.975000 3598491 torch/_dynamo/repro/aoti.py:101] Copying repro file for convenience to /data/users/shangdiy/pytorch/repro.py
Wrote minimal repro out to repro.py

The repro.py looks like this. The exported program now contains only the relu node. The minifier successfully reduced the graph to the op that raises the error.

import torch
from torch import tensor, device
import torch.fx as fx
from torch._dynamo.testing import rand_strided
from math import inf
import torch._inductor.inductor_prims

import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config

torch._inductor.config.generate_intermediate_hooks = True
torch._inductor.config.triton.inject_relu_bug_TESTING_ONLY = 'compile_error'
torch._inductor.config.aot_inductor.dump_aoti_minifier = True




isolate_fails_code_str = None



# torch version: 2.6.0a0+gitcd9c6e9
# torch cuda version: 12.0
# torch git version: cd9c6e9408dd79175712223895eed36dbdc84f84


# CUDA Info:
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2023 NVIDIA Corporation
# Built on Fri_Jan__6_16:45:21_PST_2023
# Cuda compilation tools, release 12.0, V12.0.140
# Build cuda_12.0.r12.0/compiler.32267302_0

# GPU Hardware Info:
# NVIDIA PG509-210 : 8


from torch.nn import *
class Repro(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()



    def forward(self, linear):
        relu = torch.ops.aten.relu.default(linear);  linear = None
        return (relu,)

def load_args(reader):
    buf0 = reader.storage('a4e748c3a3d0d4a78cde43e33ad0f9dd41d96e90', 512, device=device(type='cuda', index=0))
    reader.tensor(buf0, (8, 16), is_leaf=True)  # linear
load_args._version = 0
mod = Repro()
if __name__ == '__main__':
    from torch._dynamo.repro.aoti import run_repro, repro_load_args
    config_patches={}
    with torch.no_grad():
        args = repro_load_args(load_args, save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_14_19_09_678890-pid_561538/minifier/checkpoints')
        exported_program = torch.export.export(mod, args)
        run_repro(exported_program, config_patches=config_patches, accuracy=False, command='run', save_dir='/data/users/shangdiy/pytorch/torch_compile_debug/run_2024_11_06_14_19_09_678890-pid_561538/minifier/checkpoints', check_str=None)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources