torch.autograd.function.FunctionCtx.mark_non_differentiable¶
- FunctionCtx.mark_non_differentiable(*args)[source][source]¶
Mark outputs as non-differentiable.
This should be called at most once, in either the
setup_context()
orforward()
methods, and all arguments should be tensor outputs.This will mark outputs as not requiring gradients, increasing the efficiency of backward computation. You still need to accept a gradient for each output in
backward()
, but it’s always going to be a zero tensor with the same shape as the shape of a corresponding output.- This is used e.g. for indices returned from a sort. See example::
>>> class Func(Function): >>> @staticmethod >>> def forward(ctx, x): >>> sorted, idx = x.sort() >>> ctx.mark_non_differentiable(idx) >>> ctx.save_for_backward(x, idx) >>> return sorted, idx >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, g1, g2): # still need to accept g2 >>> x, idx = ctx.saved_tensors >>> grad_input = torch.zeros_like(x) >>> grad_input.index_add_(0, idx, g1) >>> return grad_input