Shortcuts

torch.cat

torch.cat(tensors, dim=0, *, out=None) Tensor

Concatenates the given sequence of tensors in tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be a 1-D empty tensor with size (0,).

torch.cat() can be seen as an inverse operation for torch.split() and torch.chunk().

torch.cat() can be best understood via examples.

See also

torch.stack() concatenates the given sequence along a new dimension.

Parameters
  • tensors (sequence of Tensors) – any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.

  • dim (int, optional) – the dimension over which the tensors are concatenated

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.6580, -1.0969, -0.4614],
        [-0.1034, -0.5790,  0.1497]])
>>> torch.cat((x, x, x), 0)
tensor([[ 0.6580, -1.0969, -0.4614],
        [-0.1034, -0.5790,  0.1497],
        [ 0.6580, -1.0969, -0.4614],
        [-0.1034, -0.5790,  0.1497],
        [ 0.6580, -1.0969, -0.4614],
        [-0.1034, -0.5790,  0.1497]])
>>> torch.cat((x, x, x), 1)
tensor([[ 0.6580, -1.0969, -0.4614,  0.6580, -1.0969, -0.4614,  0.6580,
         -1.0969, -0.4614],
        [-0.1034, -0.5790,  0.1497, -0.1034, -0.5790,  0.1497, -0.1034,
         -0.5790,  0.1497]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources