ReflectionPad3d¶
- class torch.nn.ReflectionPad3d(padding)[source][source]¶
Pads the input tensor using the reflection of the input boundary.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses (, , , , , )
- Shape:
Input: or .
Output: or , where
Examples:
>>> m = nn.ReflectionPad3d(1) >>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2) >>> m(input) tensor([[[[[7., 6., 7., 6.], [5., 4., 5., 4.], [7., 6., 7., 6.], [5., 4., 5., 4.]], [[3., 2., 3., 2.], [1., 0., 1., 0.], [3., 2., 3., 2.], [1., 0., 1., 0.]], [[7., 6., 7., 6.], [5., 4., 5., 4.], [7., 6., 7., 6.], [5., 4., 5., 4.]], [[3., 2., 3., 2.], [1., 0., 1., 0.], [3., 2., 3., 2.], [1., 0., 1., 0.]]]]])