Shortcuts

ConstantLR

class torch.optim.lr_scheduler.ConstantLR(optimizer, factor=0.3333333333333333, total_iters=5, last_epoch=-1, verbose='deprecated')[source][source]

Multiply the learning rate of each parameter group by a small constant factor.

The multiplication is done until the number of epoch reaches a pre-defined milestone: total_iters. Notice that such multiplication of the small constant factor can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.

Parameters
  • optimizer (Optimizer) – Wrapped optimizer.

  • factor (float) – The number we multiply learning rate until the milestone. Default: 1./3.

  • total_iters (int) – The number of steps that the scheduler multiplies the learning rate by the factor. Default: 5.

  • last_epoch (int) – The index of the last epoch. Default: -1.

  • verbose (bool | str) –

    If True, prints a message to stdout for each update. Default: False.

    Deprecated since version 2.2: verbose is deprecated. Please use get_last_lr() to access the learning rate.

Example

>>> # Assuming optimizer uses lr = 0.05 for all groups
>>> # lr = 0.025   if epoch == 0
>>> # lr = 0.025   if epoch == 1
>>> # lr = 0.025   if epoch == 2
>>> # lr = 0.025   if epoch == 3
>>> # lr = 0.05    if epoch >= 4
>>> scheduler = ConstantLR(optimizer, factor=0.5, total_iters=4)
>>> for epoch in range(100):
>>>     train(...)
>>>     validate(...)
>>>     scheduler.step()
get_last_lr()[source]

Return last computed learning rate by current scheduler.

Return type

List[float]

get_lr()[source][source]

Compute the learning rate of each parameter group.

load_state_dict(state_dict)[source]

Load the scheduler’s state.

Parameters

state_dict (dict) – scheduler state. Should be an object returned from a call to state_dict().

print_lr(is_verbose, group, lr, epoch=None)[source]

Display the current learning rate.

Deprecated since version 2.4: print_lr() is deprecated. Please use get_last_lr() to access the learning rate.

state_dict()[source]

Return the state of the scheduler as a dict.

It contains an entry for every variable in self.__dict__ which is not the optimizer.

step(epoch=None)[source]

Perform a step.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources