Note
Click here to download the full example code
PyTorch: Tensors¶
A third order polynomial, trained to predict \(y=\sin(x)\) from \(-\pi\) to \(pi\) by minimizing squared Euclidean distance.
This implementation uses PyTorch tensors to manually compute the forward pass, loss, and backward pass.
A PyTorch Tensor is basically the same as a numpy array: it does not know anything about deep learning or computational graphs or gradients, and is just a generic n-dimensional array to be used for arbitrary numeric computation.
The biggest difference between a numpy array and a PyTorch Tensor is that a PyTorch Tensor can run on either CPU or GPU. To run operations on the GPU, just cast the Tensor to a cuda datatype.
99 463.81201171875
199 312.108154296875
299 211.08497619628906
399 143.78140258789062
499 98.92195129394531
599 69.00719451904297
699 49.04833984375
799 35.724693298339844
899 26.82526397705078
999 20.877582550048828
1099 16.900102615356445
1199 14.238385200500488
1299 12.455989837646484
1399 11.26158618927002
1499 10.46059799194336
1599 9.923055648803711
1699 9.561992645263672
1799 9.319270133972168
1899 9.15597152709961
1999 9.045997619628906
Result: y = 0.009059899486601353 + 0.8446162343025208 x + -0.0015629848930984735 x^2 + -0.0916057676076889 x^3
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
Total running time of the script: ( 0 minutes 0.330 seconds)