Note
Click here to download the full example code
(beta) Building a Simple CPU Performance Profiler with FX¶
Author: James Reed
In this tutorial, we are going to use FX to do the following:
- Capture PyTorch Python code in a way that we can inspect and gather statistics about the structure and execution of the code
- Build out a small class that will serve as a simple performance “profiler”, collecting runtime statistics about each part of the model from actual runs.
For this tutorial, we are going to use the torchvision ResNet18 model for demonstration purposes.
import torch
import torch.fx
import torchvision.models as models
rn18 = models.resnet18()
rn18.eval()
Now that we have our model, we want to inspect deeper into its performance. That is, for the following invocation, which parts of the model are taking the longest?
input = torch.randn(5, 3, 224, 224)
output = rn18(input)
A common way of answering that question is to go through the program source, add code that collects timestamps at various points in the program, and compare the difference between those timestamps to see how long the regions between the timestamps take.
That technique is certainly applicable to PyTorch code, however it would be nicer if we didn’t have to copy over model code and edit it, especially code we haven’t written (like this torchvision model). Instead, we are going to use FX to automate this “instrumentation” process without needing to modify any source.
First, let’s get some imports out of the way (we will be using all of these later in the code).
import statistics, tabulate, time
from typing import Any, Dict, List
from torch.fx import Interpreter
Note
tabulate
is an external library that is not a dependency of PyTorch.
We will be using it to more easily visualize performance data. Please
make sure you’ve installed it from your favorite Python package source.
Capturing the Model with Symbolic Tracing¶
Next, we are going to use FX’s symbolic tracing mechanism to capture the definition of our model in a data structure we can manipulate and examine.
traced_rn18 = torch.fx.symbolic_trace(rn18)
print(traced_rn18.graph)
Out:
graph():
%x : torch.Tensor [#users=1] = placeholder[target=x]
%conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
%bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
%relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
%maxpool : [#users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
%layer1_0_conv1 : [#users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
%layer1_0_bn1 : [#users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
%layer1_0_relu : [#users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
%layer1_0_conv2 : [#users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
%layer1_0_bn2 : [#users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
%add : [#users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
%layer1_0_relu_1 : [#users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
%layer1_1_conv1 : [#users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
%layer1_1_bn1 : [#users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
%layer1_1_relu : [#users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
%layer1_1_conv2 : [#users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
%layer1_1_bn2 : [#users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
%add_1 : [#users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
%layer1_1_relu_1 : [#users=2] = call_module[target=layer1.1.relu](args = (%add_1,), kwargs = {})
%layer2_0_conv1 : [#users=1] = call_module[target=layer2.0.conv1](args = (%layer1_1_relu_1,), kwargs = {})
%layer2_0_bn1 : [#users=1] = call_module[target=layer2.0.bn1](args = (%layer2_0_conv1,), kwargs = {})
%layer2_0_relu : [#users=1] = call_module[target=layer2.0.relu](args = (%layer2_0_bn1,), kwargs = {})
%layer2_0_conv2 : [#users=1] = call_module[target=layer2.0.conv2](args = (%layer2_0_relu,), kwargs = {})
%layer2_0_bn2 : [#users=1] = call_module[target=layer2.0.bn2](args = (%layer2_0_conv2,), kwargs = {})
%layer2_0_downsample_0 : [#users=1] = call_module[target=layer2.0.downsample.0](args = (%layer1_1_relu_1,), kwargs = {})
%layer2_0_downsample_1 : [#users=1] = call_module[target=layer2.0.downsample.1](args = (%layer2_0_downsample_0,), kwargs = {})
%add_2 : [#users=1] = call_function[target=operator.add](args = (%layer2_0_bn2, %layer2_0_downsample_1), kwargs = {})
%layer2_0_relu_1 : [#users=2] = call_module[target=layer2.0.relu](args = (%add_2,), kwargs = {})
%layer2_1_conv1 : [#users=1] = call_module[target=layer2.1.conv1](args = (%layer2_0_relu_1,), kwargs = {})
%layer2_1_bn1 : [#users=1] = call_module[target=layer2.1.bn1](args = (%layer2_1_conv1,), kwargs = {})
%layer2_1_relu : [#users=1] = call_module[target=layer2.1.relu](args = (%layer2_1_bn1,), kwargs = {})
%layer2_1_conv2 : [#users=1] = call_module[target=layer2.1.conv2](args = (%layer2_1_relu,), kwargs = {})
%layer2_1_bn2 : [#users=1] = call_module[target=layer2.1.bn2](args = (%layer2_1_conv2,), kwargs = {})
%add_3 : [#users=1] = call_function[target=operator.add](args = (%layer2_1_bn2, %layer2_0_relu_1), kwargs = {})
%layer2_1_relu_1 : [#users=2] = call_module[target=layer2.1.relu](args = (%add_3,), kwargs = {})
%layer3_0_conv1 : [#users=1] = call_module[target=layer3.0.conv1](args = (%layer2_1_relu_1,), kwargs = {})
%layer3_0_bn1 : [#users=1] = call_module[target=layer3.0.bn1](args = (%layer3_0_conv1,), kwargs = {})
%layer3_0_relu : [#users=1] = call_module[target=layer3.0.relu](args = (%layer3_0_bn1,), kwargs = {})
%layer3_0_conv2 : [#users=1] = call_module[target=layer3.0.conv2](args = (%layer3_0_relu,), kwargs = {})
%layer3_0_bn2 : [#users=1] = call_module[target=layer3.0.bn2](args = (%layer3_0_conv2,), kwargs = {})
%layer3_0_downsample_0 : [#users=1] = call_module[target=layer3.0.downsample.0](args = (%layer2_1_relu_1,), kwargs = {})
%layer3_0_downsample_1 : [#users=1] = call_module[target=layer3.0.downsample.1](args = (%layer3_0_downsample_0,), kwargs = {})
%add_4 : [#users=1] = call_function[target=operator.add](args = (%layer3_0_bn2, %layer3_0_downsample_1), kwargs = {})
%layer3_0_relu_1 : [#users=2] = call_module[target=layer3.0.relu](args = (%add_4,), kwargs = {})
%layer3_1_conv1 : [#users=1] = call_module[target=layer3.1.conv1](args = (%layer3_0_relu_1,), kwargs = {})
%layer3_1_bn1 : [#users=1] = call_module[target=layer3.1.bn1](args = (%layer3_1_conv1,), kwargs = {})
%layer3_1_relu : [#users=1] = call_module[target=layer3.1.relu](args = (%layer3_1_bn1,), kwargs = {})
%layer3_1_conv2 : [#users=1] = call_module[target=layer3.1.conv2](args = (%layer3_1_relu,), kwargs = {})
%layer3_1_bn2 : [#users=1] = call_module[target=layer3.1.bn2](args = (%layer3_1_conv2,), kwargs = {})
%add_5 : [#users=1] = call_function[target=operator.add](args = (%layer3_1_bn2, %layer3_0_relu_1), kwargs = {})
%layer3_1_relu_1 : [#users=2] = call_module[target=layer3.1.relu](args = (%add_5,), kwargs = {})
%layer4_0_conv1 : [#users=1] = call_module[target=layer4.0.conv1](args = (%layer3_1_relu_1,), kwargs = {})
%layer4_0_bn1 : [#users=1] = call_module[target=layer4.0.bn1](args = (%layer4_0_conv1,), kwargs = {})
%layer4_0_relu : [#users=1] = call_module[target=layer4.0.relu](args = (%layer4_0_bn1,), kwargs = {})
%layer4_0_conv2 : [#users=1] = call_module[target=layer4.0.conv2](args = (%layer4_0_relu,), kwargs = {})
%layer4_0_bn2 : [#users=1] = call_module[target=layer4.0.bn2](args = (%layer4_0_conv2,), kwargs = {})
%layer4_0_downsample_0 : [#users=1] = call_module[target=layer4.0.downsample.0](args = (%layer3_1_relu_1,), kwargs = {})
%layer4_0_downsample_1 : [#users=1] = call_module[target=layer4.0.downsample.1](args = (%layer4_0_downsample_0,), kwargs = {})
%add_6 : [#users=1] = call_function[target=operator.add](args = (%layer4_0_bn2, %layer4_0_downsample_1), kwargs = {})
%layer4_0_relu_1 : [#users=2] = call_module[target=layer4.0.relu](args = (%add_6,), kwargs = {})
%layer4_1_conv1 : [#users=1] = call_module[target=layer4.1.conv1](args = (%layer4_0_relu_1,), kwargs = {})
%layer4_1_bn1 : [#users=1] = call_module[target=layer4.1.bn1](args = (%layer4_1_conv1,), kwargs = {})
%layer4_1_relu : [#users=1] = call_module[target=layer4.1.relu](args = (%layer4_1_bn1,), kwargs = {})
%layer4_1_conv2 : [#users=1] = call_module[target=layer4.1.conv2](args = (%layer4_1_relu,), kwargs = {})
%layer4_1_bn2 : [#users=1] = call_module[target=layer4.1.bn2](args = (%layer4_1_conv2,), kwargs = {})
%add_7 : [#users=1] = call_function[target=operator.add](args = (%layer4_1_bn2, %layer4_0_relu_1), kwargs = {})
%layer4_1_relu_1 : [#users=1] = call_module[target=layer4.1.relu](args = (%add_7,), kwargs = {})
%avgpool : [#users=1] = call_module[target=avgpool](args = (%layer4_1_relu_1,), kwargs = {})
%flatten : [#users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
%fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
return fc
This gives us a Graph representation of the ResNet18 model. A Graph
consists of a series of Nodes connected to each other. Each Node
represents a call-site in the Python code (whether to a function,
a module, or a method) and the edges (represented as args
and kwargs
on each node) represent the values passed between these call-sites. More
information about the Graph representation and the rest of FX’s APIs ca
be found at the FX documentation https://pytorch.org/docs/master/fx.html.
Creating a Profiling Interpreter¶
Next, we are going to create a class that inherits from torch.fx.Interpreter
.
Though the GraphModule
that symbolic_trace
produces compiles Python code
that is run when you call a GraphModule
, an alternative way to run a
GraphModule
is by executing each Node
in the Graph
one by one. That is
the functionality that Interpreter
provides: It interprets the graph node-
by-node.
By inheriting from Interpreter
, we can override various functionality and
install the profiling behavior we want. The goal is to have an object to which
we can pass a model, invoke the model 1 or more times, then get statistics about
how long the model and each part of the model took during those runs.
Let’s define our ProfilingInterpreter
class:
class ProfilingInterpreter(Interpreter):
def __init__(self, mod : torch.nn.Module):
# Rather than have the user symbolically trace their model,
# we're going to do it in the constructor. As a result, the
# user can pass in any ``Module`` without having to worry about
# symbolic tracing APIs
gm = torch.fx.symbolic_trace(mod)
super().__init__(gm)
# We are going to store away two things here:
#
# 1. A list of total runtimes for ``mod``. In other words, we are
# storing away the time ``mod(...)`` took each time this
# interpreter is called.
self.total_runtime_sec : List[float] = []
# 2. A map from ``Node`` to a list of times (in seconds) that
# node took to run. This can be seen as similar to (1) but
# for specific sub-parts of the model.
self.runtimes_sec : Dict[torch.fx.Node, List[float]] = {}
######################################################################
# Next, let's override our first method: ``run()``. ``Interpreter``'s ``run``
# method is the top-level entrypoint for execution of the model. We will
# want to intercept this so that we can record the total runtime of the
# model.
def run(self, *args) -> Any:
# Record the time we started running the model
t_start = time.time()
# Run the model by delegating back into Interpreter.run()
return_val = super().run(*args)
# Record the time we finished running the model
t_end = time.time()
# Store the total elapsed time this model execution took in the
# ProfilingInterpreter
self.total_runtime_sec.append(t_end - t_start)
return return_val
######################################################################
# Now, let's override ``run_node``. ``Interpreter`` calls ``run_node`` each
# time it executes a single node. We will intercept this so that we
# can measure and record the time taken for each individual call in
# the model.
def run_node(self, n : torch.fx.Node) -> Any:
# Record the time we started running the op
t_start = time.time()
# Run the op by delegating back into Interpreter.run_node()
return_val = super().run_node(n)
# Record the time we finished running the op
t_end = time.time()
# If we don't have an entry for this node in our runtimes_sec
# data structure, add one with an empty list value.
self.runtimes_sec.setdefault(n, [])
# Record the total elapsed time for this single invocation
# in the runtimes_sec data structure
self.runtimes_sec[n].append(t_end - t_start)
return return_val
######################################################################
# Finally, we are going to define a method (one which doesn't override
# any ``Interpreter`` method) that provides us a nice, organized view of
# the data we have collected.
def summary(self, should_sort : bool = False) -> str:
# Build up a list of summary information for each node
node_summaries : List[List[Any]] = []
# Calculate the mean runtime for the whole network. Because the
# network may have been called multiple times during profiling,
# we need to summarize the runtimes. We choose to use the
# arithmetic mean for this.
mean_total_runtime = statistics.mean(self.total_runtime_sec)
# For each node, record summary statistics
for node, runtimes in self.runtimes_sec.items():
# Similarly, compute the mean runtime for ``node``
mean_runtime = statistics.mean(runtimes)
# For easier understanding, we also compute the percentage
# time each node took with respect to the whole network.
pct_total = mean_runtime / mean_total_runtime * 100
# Record the node's type, name of the node, mean runtime, and
# percent runtim
node_summaries.append(
[node.op, str(node), mean_runtime, pct_total])
# One of the most important questions to answer when doing performance
# profiling is "Which op(s) took the longest?". We can make this easy
# to see by providing sorting functionality in our summary view
if should_sort:
node_summaries.sort(key=lambda s: s[2], reverse=True)
# Use the ``tabulate`` library to create a well-formatted table
# presenting our summary information
headers : List[str] = [
'Op type', 'Op', 'Average runtime (s)', 'Pct total runtime'
]
return tabulate.tabulate(node_summaries, headers=headers)
Note
We use Python’s time.time
function to pull wall clock
timestamps and compare them. This is not the most accurate
way to measure performance, and will only give us a first-
order approximation. We use this simple technique only for the
purpose of demonstration in this tutorial.
Investigating the Performance of ResNet18¶
We can now use ProfilingInterpreter
to inspect the performance
characteristics of our ResNet18 model;
interp = ProfilingInterpreter(rn18)
interp.run(input)
print(interp.summary(True))
Out:
Op type Op Average runtime (s) Pct total runtime
------------- --------------------- --------------------- -------------------
call_module maxpool 0.0221207 11.5233
call_module conv1 0.0154223 8.03395
call_module layer1_0_conv2 0.0108106 5.63157
call_module layer4_0_conv2 0.0107567 5.6035
call_module layer4_1_conv1 0.0103791 5.40676
call_module layer1_1_conv1 0.0101116 5.26741
call_module layer1_0_conv1 0.00985456 5.13353
call_module layer1_1_conv2 0.00973845 5.07304
call_module layer2_1_conv2 0.00923371 4.81011
call_module layer2_1_conv1 0.00917196 4.77794
call_module layer4_1_conv2 0.00908542 4.73286
call_module layer3_1_conv2 0.00849628 4.42596
call_module layer3_1_conv1 0.0081594 4.25047
call_module layer3_0_conv2 0.00796986 4.15173
call_module layer2_0_conv2 0.00714588 3.7225
call_module layer4_0_conv1 0.0062108 3.23539
call_module layer2_0_conv1 0.00527143 2.74604
call_module layer3_0_conv1 0.00484467 2.52373
call_module layer2_0_downsample_0 0.0026803 1.39625
call_function add 0.00164008 0.854366
call_module bn1 0.00132179 0.688561
call_function add_1 0.00131965 0.687443
call_module layer4_0_downsample_0 0.000777006 0.404765
call_function add_3 0.000711679 0.370735
call_module relu 0.000710964 0.370362
call_module layer3_0_downsample_0 0.000709534 0.369617
call_module layer1_0_bn2 0.000407457 0.212256
call_module layer1_1_bn2 0.000352383 0.183566
call_module layer1_0_bn1 0.000319242 0.166303
call_module layer1_1_bn1 0.000302315 0.157485
call_module fc 0.00028944 0.150778
call_module layer2_1_bn1 0.000261307 0.136122
call_module layer2_1_bn2 0.000239372 0.124696
call_module layer1_0_relu_1 0.000236511 0.123206
call_module layer2_0_bn2 0.000217199 0.113145
call_module layer2_0_downsample_1 0.000216961 0.113021
call_module layer2_0_bn1 0.000212193 0.110537
call_module layer3_0_relu_1 0.000198364 0.103334
call_function add_2 0.000197887 0.103085
call_module layer1_1_relu_1 0.000180006 0.0937704
call_module layer1_0_relu 0.000177622 0.0925284
call_module layer3_1_bn1 0.000161886 0.0843313
call_module layer1_1_relu 0.000152111 0.0792391
call_module layer2_1_relu_1 0.000150919 0.0786181
call_module layer3_1_bn2 0.000142813 0.0743953
call_module layer3_0_bn1 0.000141382 0.0736501
call_module layer4_1_bn1 0.000139952 0.0729049
call_module layer3_0_downsample_1 0.000133038 0.0693032
call_module avgpool 0.000132322 0.0689306
call_module layer4_1_bn2 0.0001297 0.0675644
call_module layer3_0_bn2 0.000129223 0.067316
call_module layer4_0_downsample_1 0.000122547 0.0638384
call_module layer2_1_relu 0.000121593 0.0633416
call_module layer4_0_bn2 0.000120878 0.062969
call_module layer4_0_bn1 0.000118494 0.061727
call_module layer2_0_relu_1 0.000108957 0.056759
call_module layer2_0_relu 9.77516e-05 0.0509217
call_function add_5 9.44138e-05 0.0491829
call_function add_4 9.27448e-05 0.0483135
call_module layer3_1_relu 7.05719e-05 0.036763
call_module layer3_0_relu 6.91414e-05 0.0360178
call_module layer3_1_relu_1 6.50883e-05 0.0339064
call_function add_6 6.48499e-05 0.0337822
call_module layer4_1_relu_1 5.81741e-05 0.0303046
call_module layer4_1_relu 5.67436e-05 0.0295594
call_function add_7 5.65052e-05 0.0294352
call_module layer4_0_relu_1 5.57899e-05 0.0290626
call_module layer4_0_relu 4.79221e-05 0.024964
call_function flatten 2.90871e-05 0.0151523
output output 1.64509e-05 0.00856975
placeholder x 1.19209e-05 0.00620996
There are two things we should call out here:
- MaxPool2d takes up the most time. This is a known issue: https://github.com/pytorch/pytorch/issues/51393
- BatchNorm2d also takes up significant time. We can continue this line of thinking and optimize this in the Conv-BN Fusion with FX tutorial.
Conclusion¶
As we can see, using FX we can easily capture PyTorch programs (even ones we don’t have the source code for!) in a machine-interpretable format and use that for analysis, such as the performance analysis we’ve done here. FX opens up an exiciting world of possibilities for working with PyTorch programs.
Finally, since FX is still in beta, we would be happy to hear any feedback you have about using it. Please feel free to use the PyTorch Forums (https://discuss.pytorch.org/) and the issue tracker (https://github.com/pytorch/pytorch/issues) to provide any feedback you might have.
Total running time of the script: ( 0 minutes 0.766 seconds)