Model Parallel Best Practices

Author: Shen Li

Data parallel and model parallel are widely-used in distributed training techniques. Previous posts have explained how to use DataParallel to train a neural network on multiple GPUs. DataParallel replicates the same model to all GPUs, where each GPU consumes a different partition of the input data. Although it can significantly accelerate the training process, it does not work for some use cases where the model is too large to fit into a single GPU. This post shows how to solve that problem by using model parallel and also shares some insights on how to speed up model parallel training.

The high-level idea of model parallel is to place different sub-networks of a model onto different devices, and implement the forward method accordingly to move intermediate outputs across devices. As only part of a model operates on any individual device, a set of devices can collectively serve a larger model. In this post, we will not try to construct huge models and squeeze them into a limited number of GPUs. Instead, this post focuses on showing the idea of model parallel. It is up to the readers to apply the ideas to real-world applications.

Recommended Reading:

Basic Usage

Let us start with a toy model that contains two linear layers. To run this model on two GPUs, simply put each linear layer on a different GPU, and move inputs and intermediate outputs to match the layer devices accordingly.

import torch
import torch.nn as nn
import torch.optim as optim

class ToyModel(nn.Module):
    def __init__(self):
        super(ToyModel, self).__init__()
        self.net1 = torch.nn.Linear(10, 10).to('cuda:0')
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

    def forward(self, x):
        x = self.relu(self.net1('cuda:0')))
        return self.net2('cuda:1'))

Note that, the above ToyModel looks very similar to how one would implement it on a single GPU, except the five to(device) calls which place linear layers and tensors on proper devices. That is the only place in the model that requires changes. The backward() and torch.optim will automatically take care of gradients as if the model is on one GPU. You only need to make sure that the labels are on the same device as the outputs when calling the loss function.

model = ToyModel()
loss_fn = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)

outputs = model(torch.randn(20, 10))
labels = torch.randn(20, 5).to('cuda:1')
loss_fn(outputs, labels).backward()

Apply Model Parallel to Existing Modules

It is also possible to run an existing single-GPU module on multiple GPUs with just a few lines of changes. The code below shows how to decompose torchvision.models.reset50() to two GPUs. The idea is to inherit from the existing ResNet module, and split the layers to two GPUs during construction. Then, override the forward method to stitch two sub-networks by moving the intermediate outputs accordingly.

from torchvision.models.resnet import ResNet, Bottleneck

num_classes = 1000

class ModelParallelResNet50(ResNet):
    def __init__(self, *args, **kwargs):
        super(ModelParallelResNet50, self).__init__(
            Bottleneck, [3, 4, 6, 3], num_classes=num_classes, *args, **kwargs)

        self.seq1 = nn.Sequential(


        self.seq2 = nn.Sequential(

    def forward(self, x):
        x = self.seq2(self.seq1(x).to('cuda:1'))
        return self.fc(x.view(x.size(0), -1))

The above implementation solves the problem for cases where the model is too large to fit into a single GPU. However, you might have already noticed that it will be slower than running it on a single GPU if your model fits. It is because, at any point in time, only one of the two GPUs are working, while the other one is sitting there doing nothing. The performance further deteriorates as the intermediate outputs need to be copied from cuda:0 to cuda:1 between layer2 and layer3.

Let us run an experiment to get a more quantitative view of the execution time. In this experiment, we train ModelParallelResNet50 and the existing torchvision.models.reset50() by running random inputs and labels through them. After the training, the models will not produce any useful predictions, but we can get a reasonable understanding of the execution times.

import torchvision.models as models

num_batches = 3
batch_size = 120
image_w = 128
image_h = 128

def train(model):
    loss_fn = nn.MSELoss()
    optimizer = optim.SGD(model.parameters(), lr=0.001)

    one_hot_indices = torch.LongTensor(batch_size) \
                           .random_(0, num_classes) \
                           .view(batch_size, 1)

    for _ in range(num_batches):
        # generate random inputs and labels
        inputs = torch.randn(batch_size, 3, image_w, image_h)
        labels = torch.zeros(batch_size, num_classes) \
                      .scatter_(1, one_hot_indices, 1)

        # run forward pass
        outputs = model('cuda:0'))

        # run backward pass
        labels =
        loss_fn(outputs, labels).backward()

The train(model) method above uses nn.MSELoss as the loss function, and optim.SGD as the optimizer. It mimics training on 128 X 128 images which are organized into 3 batches where each batch contains 120 images. Then, we use timeit to run the train(model) method 10 times and plot the execution times with standard deviations.

import matplotlib.pyplot as plt
import numpy as np
import timeit

num_repeat = 10

stmt = "train(model)"

setup = "model = ModelParallelResNet50()"
# globals arg is only available in Python 3. In Python 2, use the following
# import __builtin__
# __builtin__.__dict__.update(locals())
mp_run_times = timeit.repeat(
    stmt, setup, number=1, repeat=num_repeat, globals=globals())
mp_mean, mp_std = np.mean(mp_run_times), np.std(mp_run_times)

setup = "import torchvision.models as models;" + \
        "model = models.resnet50(num_classes=num_classes).to('cuda:0')"
rn_run_times = timeit.repeat(
    stmt, setup, number=1, repeat=num_repeat, globals=globals())
rn_mean, rn_std = np.mean(rn_run_times), np.std(rn_run_times)

def plot(means, stds, labels, fig_name):
    fig, ax = plt.subplots(), means, yerr=stds,
           align='center', alpha=0.5, ecolor='red', capsize=10, width=0.6)
    ax.set_ylabel('ResNet50 Execution Time (Second)')

plot([mp_mean, rn_mean],
     [mp_std, rn_std],
     ['Model Parallel', 'Single GPU'],

The result shows that the execution time of model parallel implementation is 4.02/3.75-1=7% longer than the existing single-GPU implementation. So we can conclude there is roughly 7% overhead in copying tensors back and forth across the GPUs. There are rooms for improvements, as we know one of the two GPUs is sitting idle throughout the execution. One option is to further divide each batch into a pipeline of splits, such that when one split reaches the second sub-network, the following split can be fed into the first sub-network. In this way, two consecutive splits can run concurrently on two GPUs.

Speed Up by Pipelining Inputs

In the following experiments, we further divide each 120-image batch into 20-image splits. As PyTorch launches CUDA operations asynchronizely, the implementation does not need to spawn multiple threads to achieve concurrency.

class PipelineParallelResNet50(ModelParallelResNet50):
    def __init__(self, split_size=20, *args, **kwargs):
        super(PipelineParallelResNet50, self).__init__(*args, **kwargs)
        self.split_size = split_size

    def forward(self, x):
        splits = iter(x.split(self.split_size, dim=0))
        s_next = next(splits)
        s_prev = self.seq1(s_next).to('cuda:1')
        ret = []

        for s_next in splits:
            # A. s_prev runs on cuda:1
            s_prev = self.seq2(s_prev)
            ret.append(self.fc(s_prev.view(s_prev.size(0), -1)))

            # B. s_next runs on cuda:0, which can run concurrently with A
            s_prev = self.seq1(s_next).to('cuda:1')

        s_prev = self.seq2(s_prev)
        ret.append(self.fc(s_prev.view(s_prev.size(0), -1)))


setup = "model = PipelineParallelResNet50()"
pp_run_times = timeit.repeat(
    stmt, setup, number=1, repeat=num_repeat, globals=globals())
pp_mean, pp_std = np.mean(pp_run_times), np.std(pp_run_times)

plot([mp_mean, rn_mean, pp_mean],
     [mp_std, rn_std, pp_std],
     ['Model Parallel', 'Single GPU', 'Pipelining Model Parallel'],

Please note, device-to-device tensor copy operations are synchronized on current streams on the source and the destination devices. If you create multiple streams, you have to make sure that copy operations are properly synchronized. Writing the source tensor or reading/writing the destination tensor before finishing the copy operation can lead to undefined behavior. The above implementation only uses default streams on both source and destination devices, hence it is not necessary to enforce additional synchronizations.

The experiment result shows that, pipelining inputs to model parallel ResNet50 speeds up the training process by roughly 3.75/2.51-1=49%. It is still quite far away from the ideal 100% speedup. As we have introduced a new parameter split_sizes in our pipeline parallel implementation, it is unclear how the new parameter affects the overall training time. Intuitively speaking, using small split_size leads to many tiny CUDA kernel launch, while using large split_size results to relatively long idle times during the first and last splits. Neither are optimal. There might be an optimal split_size configuration for this specific experiment. Let us try to find it by running experiments using several different split_size values.

means = []
stds = []
split_sizes = [1, 3, 5, 8, 10, 12, 20, 40, 60]

for split_size in split_sizes:
    setup = "model = PipelineParallelResNet50(split_size=%d)" % split_size
    pp_run_times = timeit.repeat(
        stmt, setup, number=1, repeat=num_repeat, globals=globals())

fig, ax = plt.subplots()
ax.plot(split_sizes, means)
ax.errorbar(split_sizes, means, yerr=stds, ecolor='red', fmt='ro')
ax.set_ylabel('ResNet50 Execution Time (Second)')
ax.set_xlabel('Pipeline Split Size')

The result shows that setting split_size to 12 achieves the fastest training speed, which leads to 3.75/2.43-1=54% speedup. There are still opportunities to further accelerate the training process. For example, all operations on cuda:0 is placed on its default stream. It means that computations on the next split cannot overlap with the copy operation of the prev split. However, as prev and next splits are different tensors, there is no problem to overlap one’s computation with the other one’s copy. The implementation need to use multiple streams on both GPUs, and different sub-network structures require different stream management strategies. As no general multi-stream solution works for all model parallel use cases, we will not discuss it in this tutorial.

Total running time of the script: ( 6 minutes 0.105 seconds)

Gallery generated by Sphinx-Gallery


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources