Exploring TorchRec sharding¶
Created On: May 10, 2022 | Last Updated: May 13, 2022 | Last Verified: Nov 05, 2024
This tutorial will mainly cover the sharding schemes of embedding tables
via EmbeddingPlanner
and DistributedModelParallel
API and
explore the benefits of different sharding schemes for the embedding
tables by explicitly configuring them.
Installation¶
Requirements: - python >= 3.7
We highly recommend CUDA when using torchRec. If using CUDA: - cuda >= 11.0
# install conda to make installying pytorch with cudatoolkit 11.3 easier.
!sudo rm Miniconda3-py37_4.9.2-Linux-x86_64.sh Miniconda3-py37_4.9.2-Linux-x86_64.sh.*
!sudo wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo chmod +x Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo bash ./Miniconda3-py37_4.9.2-Linux-x86_64.sh -b -f -p /usr/local
# install pytorch with cudatoolkit 11.3
!sudo conda install pytorch cudatoolkit=11.3 -c pytorch-nightly -y
Installing torchRec will also install FBGEMM, a collection of CUDA kernels and GPU enabled operations to run
# install torchrec
!pip3 install torchrec-nightly
Install multiprocess which works with ipython to for multi-processing programming within colab
!pip3 install multiprocess
The following steps are needed for the Colab runtime to detect the added shared libraries. The runtime searches for shared libraries in /usr/lib, so we copy over the libraries which were installed in /usr/local/lib/. This is a very necessary step, only in the colab runtime.
!sudo cp /usr/local/lib/lib* /usr/lib/
Restart your runtime at this point for the newly installed packages to be seen. Run the step below immediately after restarting so that python knows where to look for packages. Always run this step after restarting the runtime.
import sys
sys.path = ['', '/env/python', '/usr/local/lib/python37.zip', '/usr/local/lib/python3.7', '/usr/local/lib/python3.7/lib-dynload', '/usr/local/lib/python3.7/site-packages', './.local/lib/python3.7/site-packages']
Distributed Setup¶
Due to the notebook enviroment, we cannot run SPMD program here but we can do multiprocessing inside the notebook to mimic the setup. Users should be responsible for setting up their own SPMD launcher when using Torchrec. We setup our environment so that torch distributed based communication backend can work.
import os
import torch
import torchrec
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29500"
Constructing our embedding model¶
Here we use TorchRec offering of EmbeddingBagCollection to construct our embedding bag model with embedding tables.
Here, we create an EmbeddingBagCollection (EBC) with four embedding bags. We have two types of tables: large tables and small tables differentiated by their row size difference: 4096 vs 1024. Each table is still represented by 64 dimension embedding.
We configure the ParameterConstraints
data structure for the tables,
which provides hints for the model parallel API to help decide the
sharding and placement strategy for the tables. In TorchRec, we support
* table-wise
: place the entire table on one device; *
row-wise
: shard the table evenly by row dimension and place one
shard on each device of the communication world; * column-wise
:
shard the table evenly by embedding dimension, and place one shard on
each device of the communication world; * table-row-wise
: special
sharding optimized for intra-host communication for available fast
intra-machine device interconnect, e.g. NVLink; * data_parallel
:
replicate the tables for every device;
Note how we initially allocate the EBC on device “meta”. This will tell EBC to not allocate memory yet.
from torchrec.distributed.planner.types import ParameterConstraints
from torchrec.distributed.embedding_types import EmbeddingComputeKernel
from torchrec.distributed.types import ShardingType
from typing import Dict
large_table_cnt = 2
small_table_cnt = 2
large_tables=[
torchrec.EmbeddingBagConfig(
name="large_table_" + str(i),
embedding_dim=64,
num_embeddings=4096,
feature_names=["large_table_feature_" + str(i)],
pooling=torchrec.PoolingType.SUM,
) for i in range(large_table_cnt)
]
small_tables=[
torchrec.EmbeddingBagConfig(
name="small_table_" + str(i),
embedding_dim=64,
num_embeddings=1024,
feature_names=["small_table_feature_" + str(i)],
pooling=torchrec.PoolingType.SUM,
) for i in range(small_table_cnt)
]
def gen_constraints(sharding_type: ShardingType = ShardingType.TABLE_WISE) -> Dict[str, ParameterConstraints]:
large_table_constraints = {
"large_table_" + str(i): ParameterConstraints(
sharding_types=[sharding_type.value],
) for i in range(large_table_cnt)
}
small_table_constraints = {
"small_table_" + str(i): ParameterConstraints(
sharding_types=[sharding_type.value],
) for i in range(small_table_cnt)
}
constraints = {**large_table_constraints, **small_table_constraints}
return constraints
ebc = torchrec.EmbeddingBagCollection(
device="cuda",
tables=large_tables + small_tables
)
DistributedModelParallel in multiprocessing¶
Now, we have a single process execution function for mimicking one rank’s work during SPMD execution.
This code will shard the model collectively with other processes and
allocate memories accordingly. It first sets up process groups and do
embedding table placement using planner and generate sharded model using
DistributedModelParallel
.
def single_rank_execution(
rank: int,
world_size: int,
constraints: Dict[str, ParameterConstraints],
module: torch.nn.Module,
backend: str,
) -> None:
import os
import torch
import torch.distributed as dist
from torchrec.distributed.embeddingbag import EmbeddingBagCollectionSharder
from torchrec.distributed.model_parallel import DistributedModelParallel
from torchrec.distributed.planner import EmbeddingShardingPlanner, Topology
from torchrec.distributed.types import ModuleSharder, ShardingEnv
from typing import cast
def init_distributed_single_host(
rank: int,
world_size: int,
backend: str,
# pyre-fixme[11]: Annotation `ProcessGroup` is not defined as a type.
) -> dist.ProcessGroup:
os.environ["RANK"] = f"{rank}"
os.environ["WORLD_SIZE"] = f"{world_size}"
dist.init_process_group(rank=rank, world_size=world_size, backend=backend)
return dist.group.WORLD
if backend == "nccl":
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
else:
device = torch.device("cpu")
topology = Topology(world_size=world_size, compute_device="cuda")
pg = init_distributed_single_host(rank, world_size, backend)
planner = EmbeddingShardingPlanner(
topology=topology,
constraints=constraints,
)
sharders = [cast(ModuleSharder[torch.nn.Module], EmbeddingBagCollectionSharder())]
plan: ShardingPlan = planner.collective_plan(module, sharders, pg)
sharded_model = DistributedModelParallel(
module,
env=ShardingEnv.from_process_group(pg),
plan=plan,
sharders=sharders,
device=device,
)
print(f"rank:{rank},sharding plan: {plan}")
return sharded_model
Multiprocessing Execution¶
Now let’s execute the code in multi-processes representing multiple GPU ranks.
import multiprocess
def spmd_sharing_simulation(
sharding_type: ShardingType = ShardingType.TABLE_WISE,
world_size = 2,
):
ctx = multiprocess.get_context("spawn")
processes = []
for rank in range(world_size):
p = ctx.Process(
target=single_rank_execution,
args=(
rank,
world_size,
gen_constraints(sharding_type),
ebc,
"nccl"
),
)
p.start()
processes.append(p)
for p in processes:
p.join()
assert 0 == p.exitcode
Table Wise Sharding¶
Now let’s execute the code in two processes for 2 GPUs. We can see in the plan print that how our tables are sharded across GPUs. Each node will have one large table and one small which shows our planner tries for load balance for the embedding tables. Table-wise is the de-factor go-to sharding schemes for many small-medium size tables for load balancing over the devices.
spmd_sharing_simulation(ShardingType.TABLE_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}
Explore other sharding modes¶
We have initially explored what table-wise sharding would look like and
how it balances the tables placement. Now we explore sharding modes with
finer focus on load balance: row-wise. Row-wise is specifically
addressing large tables which a single device cannot hold due to the
memory size increase from large embedding row numbers. It can address
the placement of the super large tables in your models. Users can see
that in the shard_sizes
section in the printed plan log, the tables
are halved by row dimension to be distributed onto two GPUs.
spmd_sharing_simulation(ShardingType.ROW_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}
Column-wise on the other hand, address the load imbalance problems for
tables with large embedding dimensions. We will split the table
vertically. Users can see that in the shard_sizes
section in the
printed plan log, the tables are halved by embedding dimension to be
distributed onto two GPUs.
spmd_sharing_simulation(ShardingType.COLUMN_WISE)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}
For table-row-wise
, unfortuately we cannot simulate it due to its
nature of operating under multi-host setup. We will present a python
SPMD example in the future
to train models with table-row-wise
.
With data parallel, we will repeat the tables for all devices.
spmd_sharing_simulation(ShardingType.DATA_PARALLEL)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}