Note
Click here to download the full example code
Inductor CPU backend debugging and profiling¶
Authors: Xuan Liao, Haozhe Zhu, Jiong Gong, Weihan Wang
Overview¶
PyTorch 2.0 introduced the compilation API called torch.compile
.
This new feature offers a significant speedup over eager mode execution through graph-level optimization powered by the default Inductor backend.
This tutorial is intended to provide an in-depth introduction on the debugging
and performance profiling on Inductor CPU backend by delving into the intricacies of torch.compile
.
Meanwhile, you may also find related tutorials about torch.compile
around basic usage,
comprehensive troubleshooting
and GPU-specific knowledge like GPU performance profiling.
We will start debugging with a motivating example that triggers compilation issues and accuracy problems by demonstrating the process of debugging to pinpoint the problems.
By enabling logging and exploring the underlying generated code, you can learn how to narrow down the failure step by step and finally figure out the route cause.
Following that, we will proceed to discuss how to profile the compiled code and,
through a performance comparison with eager mode,
elaborate on the reasons why torch.compile
can provide an additional performance boost compared to its eager counterpart.
Debugging¶
Here is a simple example to run the torch.compile
using Inductor and compare its result with eager mode:
import torch
def foo1(x1, x2):
a = torch.neg(x1)
b = torch.maximum(x2, a)
y = torch.cat([b], dim=0)
return y
x1 = torch.randint(256, (1, 8), dtype=torch.uint8)
x2 = torch.randint(256, (8390, 8), dtype=torch.uint8)
compiled_foo1 = torch.compile(foo1)
result = compiled_foo1(x1, x2)
/usr/local/lib/python3.10/dist-packages/onnxscript/converter.py:820: FutureWarning:
'onnxscript.values.Op.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead.
/usr/local/lib/python3.10/dist-packages/onnxscript/converter.py:820: FutureWarning:
'onnxscript.values.OnnxFunction.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead.
The correct implementation of neg
in the cpp
codegen is as follows:
def neg1(x):
return f"decltype({x})(-{x})"
In order to demonstrate the debugging, we will modify the function to a wrong one later.
Get more logging information¶
No debugging information would be provided if you run this simple example by default. In order to get more useful debugging and logging information, we usually add a TORCH_COMPILE_DEBUG
environment variable like below:
TORCH_COMPILE_DEBUG=1 python xx.py
This would print more debug information in the output logs and also dump the intermediate IRs generated during the codegen process. You can find the dumped file paths in the log like below:
torch._inductor.debug: [WARNING] model___20 debug trace: /tmp/torchinductor_root/rx/crxfi2ybd7yp5sbj2pnhw33wfhtdw7wumvrobyp5sjvdui5ktjc2.debug
In this directory, the following files are saved for debugging purposes:
File |
Description |
---|---|
|
Executable FX graph, after decomposition, before pattern match |
|
Transformed FX graph, after pattern match |
|
Inductor IR before fusion |
|
Inductor IR after fusion |
|
Generated Python code for graph, with C++/Triton kernels |
Note that fx_graph_runnable.py
and output_code.py
are both runnable and editable in order to make debugging easier.
Here are the main parts of code extracted from the files and we correlate the C++ generated line with the FX code line.
fx_graph_runnable
:
def forward1(self, arg0_1, arg1_1):
neg = torch.ops.aten.neg.default(arg0_1); arg0_1 = None
maximum = torch.ops.aten.maximum.default(arg1_1, neg); arg1_1 = neg = None
clone = torch.ops.aten.clone.default(maximum); maximum = None
return (clone,)
C++ kernel in output_code
:
import torch
from torch._inductor.async_compile import AsyncCompile
async_compile = AsyncCompile()
cpp_fused_cat_maximum_neg_0 = async_compile.cpp('''
#include "/tmp/torchinductor_root/gv/cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x.h"
extern "C" void kernel(const unsigned char* in_ptr0,
const unsigned char* in_ptr1,
unsigned char* out_ptr0)
{
{
#pragma GCC ivdep
for(long i0=static_cast<long>(0L); i0<static_cast<long>(8390L); i0+=static_cast<long>(1L))
{
#pragma GCC ivdep
for(long i1=static_cast<long>(0L); i1<static_cast<long>(8L); i1+=static_cast<long>(1L))
{
auto tmp0 = in_ptr0[static_cast<long>(i1 + (8L*i0))];
auto tmp1 = in_ptr1[static_cast<long>(i1)];
// Corresponding FX code line: neg = torch.ops.aten.neg.default(arg0_1); arg0_1 = None
auto tmp2 = decltype(tmp1)(-tmp1);
// Corresponding FX code line: maximum = torch.ops.aten.maximum.default(arg1_1, neg); arg1_1 = neg = None
auto tmp3 = max_propagate_nan(tmp0, tmp2);
// Corresponding FX code line: clone = torch.ops.aten.clone.default(maximum); maximum = None
out_ptr0[static_cast<long>(i1 + (8L*i0))] = tmp3;
}
}
}
}''')
Determine component of error¶
When encountering errors or accuracy problems, a straightforward solution to find the bug is to narrow down the problem. The first thing to do is to determine the component where the error occurs. Luckily, it can be simply achieved by changing the backend of torch.compile
.
Code |
Description |
---|---|
|
Enable Dynamo |
|
Enable Dynamo + AOT Autograd |
|
Enable Dynamo + AOT Autograd + Inductor |
If the model can successfully run when the backend is set to eager
or aot_eager
while it fails with inductor
, we can narrow down the failure to Inductor.
Compilation error¶
As we know, the evolved chain of graph-level optimization is like:
torch.neg (Python) -> torch.ops.aten.neg.default (within FX graph) -> ops.neg (within IR node) -> tmp2 = -tmp1 (within C++ kernel)
If you encounter a compilation error, there is something wrong when compiling C++ kernels in the output code. This type of error indicates that bugs are introduced when lowering IR nodes to output code. The root cause of compilation error is usually shown in the traceback log.
For example, the neg
function is modified like this:
def neg2(x):
return f"-{x}"
The logging gives the following compile error with a rather clear reason.
torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
CppCompileError: C++ compile error
/tmp/torchinductor_root/xg/cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx.cpp: In function ‘void kernel(const unsigned char*, const unsigned char*, unsigned char*)’:
/tmp/torchinductor_root/xg/cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx.cpp:17:57: error: no matching function for call to ‘max_propagate_nan(unsigned char&, int&)’
17 | auto tmp3 = max_propagate_nan(tmp0, tmp2);
| ^
In file included from /tmp/torchinductor_root/xg/cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx.cpp:2:
/tmp/torchinductor_root/gv/cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x.h:27:17: note: candidate: ‘template<class scalar_t> scalar_t max_propagate_nan(scalar_t, scalar_t)’
27 | inline scalar_t max_propagate_nan(scalar_t a, scalar_t b) {
| ^~~~~~~~~~~~~~~~~
/tmp/torchinductor_root/gv/cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x.h:27:17: note: template argument deduction/substitution failed:
/tmp/torchinductor_root/xg/cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx.cpp:17:57: note: deduced conflicting types for parameter ‘scalar_t’ (‘unsigned char’ and ‘int’)
17 | auto tmp3 = max_propagate_nan(tmp0, tmp2);
| ^
Let us also see the corresponding C++ kernel in output code and IR node.
C++ kernel:
include "/tmp/torchinductor_root/gv/cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x.h"
extern "C" void kernel(const unsigned char* in_ptr0,
const unsigned char* in_ptr1,
unsigned char* out_ptr0)
{
{
#pragma GCC ivdep
for(long i0=static_cast<long>(0L); i0<static_cast<long>(8390L); i0+=static_cast<long>(1L))
{
#pragma GCC ivdep
for(long i1=static_cast<long>(0L); i1<static_cast<long>(8L); i1+=static_cast<long>(1L))
{
auto tmp0 = in_ptr0[static_cast<long>(i1 + (8L*i0))];
auto tmp1 = in_ptr1[static_cast<long>(i1)];
auto tmp2 = -tmp1;
auto tmp3 = max_propagate_nan(tmp0, tmp2);
out_ptr0[static_cast<long>(i1 + (8L*i0))] = tmp3;
}
}
}
}
IR node:
buf0: SchedulerNode(ComputedBuffer)
buf0.writes = [MemoryDep('buf0', c0, {c0: 67120})]
buf0.unmet_dependencies = []
buf0.met_dependencies =
[ MemoryDep('arg0_1', c1, {c0: 8390, c1: 8}),
MemoryDep('arg1_1', c0, {c0: 67120})]
buf0.users = [NodeUser(node=OUTPUT, can_inplace=False)]
buf0.group.device = cpu
buf0.group.iteration = ((8390, 8), ())
buf0.sizes = ([8390, 8], [])
class buf0_loop_body:
var_ranges = {z0: 8390, z1: 8}
index0 = 8*z0 + z1
index1 = z1
def body(self, ops):
get_index = self.get_index('index0')
load = ops.load('arg1_1', get_index)
get_index_1 = self.get_index('index1')
load_1 = ops.load('arg0_1', get_index_1)
neg = ops.neg(load_1)
maximum = ops.maximum(load, neg)
get_index_2 = self.get_index('index0')
store = ops.store('buf0', get_index_2, maximum, None)
return store
According to the traceback logging, the compilation error is caused by the data type inconsistency of max_propagate_nan
’s inputs.
By checking the C++ kernel, we know that tmp2
is no longer long
after doing -
as tmp0
is long
.
We can easily match -
and max_propagate_nan
in C++ kernel with ops.neg
and ops.maximum
in IR node respectively.
Now we successfully find that the root cause is the implementation of ops.neg
in cpp
codegen, which silently changes the data type when doing neg
.
Accuracy debugging¶
Otherwise, if the model runs with other errors or accuracy problem, you can use the PyTorch debugging tool called Minifier.
The core idea of Minifier
is to keep removing the nodes and inputs of graph until finding the minimal graph with problem.
It helps to automatically generate a minified problematic graph through 4 strategies: truncating suffix, delta debugging, eliminating dead code and removing unused inputs.
We will now show the debugging process for the accuracy problem with the help of Minifer
.
The accuracy problem refers to the case where the outputs of backends eager and inductor are different.
For instance, we modify the example like this:
from torch._dynamo.utils import same
def foo2(x1, x2):
a = torch.neg(x1)
b = torch.maximum(x2, a)
y = torch.cat([b], dim=0)
return y
x1 = torch.randn((1, 8), dtype=torch.float32)
x2 = torch.randn((8390, 8), dtype=torch.float32)
expected_result = foo2(x1, x2)
compiled_foo2 = torch.compile(foo2)
actual_result = compiled_foo2(x1, x2)
assert same(expected_result, actual_result) == True
And also modify the neg
function:
def neg3(x):
return f"decltype({x})(2 * {x})"
An accuracy problem would be raised as follows:
torch._dynamo.utils: [ERROR] Accuracy failed: allclose not within tol=0.0001
Traceback (most recent call last):
File "test_script.py", line 18, in <module>
assert same(expected_result, actual_result) == True
AssertionError
To debug an accuracy problem with Minifier, two environment variables are needed:
TORCHDYNAMO_REPRO_AFTER="aot" TORCHDYNAMO_REPRO_LEVEL=4 python xx.py
Which gives us logging information that demonstrates the steps of minifying:
Started off with 6 nodes
Trying granularity 2
Strategy: Truncate suffix (G: 2) (6 nodes, 2 inputs)
SUCCESS: Went from 6 to 4 nodes
Trying granularity 4
Strategy: Remove unused inputs (G: 4) (4 nodes, 2 inputs)
SUCCESS: Went from 4 to 3 nodes
After running, we get the final minified graph with the target node neg
:
def forward2(self, arg0_1):
neg = torch.ops.aten.neg.default(arg0_1); arg0_1 = None
return (neg,)
For more usage details about Minifier, please refer to Troubleshooting.
Performance profiling¶
Within this section, we will demonstrate the process of conducting performance analysis for a model that has been compiled using the Inductor CPU backend.
In the example below, we benchmark a Hugging Face Transformer model MobileBertForQuestionAnswering
with both the eager mode and the Inductor graph mode.
The execution time and the speedup ratio of Inductor are printed after the benchmark.
We use Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz and run benchmark on the first socket to demonstrate the optimization within this section.
We set following environment variable as a best practice to benchmark on Intel(R) CPU.
export KMP_BLOCKTIME=1
export KMP_SETTINGS=1
export KMP_AFFINITY=granularity=fine,compact,1,0
export LD_PRELOAD=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}/lib/libiomp5.so:${CONDA_PREFIX:-"$(dirname $(which conda))/../"}/lib/libjemalloc.so
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
numactl -C 0-31 -m 0 python bench.py
# bench.py
from transformers import MobileBertForQuestionAnswering
# Initialize an eager model
model = MobileBertForQuestionAnswering.from_pretrained("csarron/mobilebert-uncased-squad-v2")
seq_length = 128
bs = 128
vocab_size = model.config.vocab_size
input = torch.randint(0, vocab_size, (bs, seq_length), dtype=torch.int64)
input_dict = {"input_ids": input}
# Initialize the inductor model
compiled_model = torch.compile(model)
with torch.no_grad():
compiled_model(**input_dict)
NUM_ITERS=50
import timeit
with torch.no_grad():
# warmup
for _ in range(10):
model(**input_dict)
eager_t = timeit.timeit("model(**input_dict)", number=NUM_ITERS, globals=globals())
with torch.no_grad():
# warmup
for _ in range(10):
compiled_model(**input_dict)
inductor_t = timeit.timeit("compiled_model(**input_dict)", number=NUM_ITERS, globals=globals())
# print(f"eager use: {eager_t * 1000 / NUM_ITERS} ms/iter")
# print(f"inductor use: {inductor_t * 1000 / NUM_ITERS} ms/iter")
# print(f"speed up ratio: {eager_t / inductor_t}")
/usr/local/lib/python3.10/dist-packages/numpy/core/getlimits.py:518: UserWarning:
The value of the smallest subnormal for <class 'numpy.float32'> type is zero.
/usr/local/lib/python3.10/dist-packages/numpy/core/getlimits.py:89: UserWarning:
The value of the smallest subnormal for <class 'numpy.float32'> type is zero.
Output:
eager use: 802.1023553796113 ms/iter
inductor use: 339.95180135127157 ms/iter
speed up ratio: 2.359459053287382
In our own testing, we find the Inductor CPU backend speed up the model by around 2.355x.
Next, let’s dive deep into the performance at the operation level to understand where the speed-up comes from.
Pytorch Profiler is a good tool to help us.
Inductor CPU backend has the support to report the time of the fusion kernels to the profiler with the enable_kernel_profile
configuration option:
from torch._inductor import config
config.cpp.enable_kernel_profile = True
Following the steps in Pytorch Profiler We are able to get the profiling table and trace files.
# bench.py
from torch.profiler import profile, schedule, ProfilerActivity
RESULT_DIR = "./prof_trace"
my_schedule = schedule(
skip_first=10,
wait=5,
warmup=5,
active=1,
repeat=5)
def trace_handler(p):
output = p.key_averages().table(sort_by="self_cpu_time_total", row_limit=20)
# print(output)
p.export_chrome_trace(f"{RESULT_DIR}/{p.step_num}.json")
for _ in range(10):
model(**input_dict) # compiled_model(**input_dict) to get inductor model profiling
total = 0
with profile(
activities=[ProfilerActivity.CPU],
schedule=my_schedule,
on_trace_ready=trace_handler
) as p:
for _ in range(50):
model(**input_dict) # compiled_model(**input_dict) to get inductor model profiling
p.step()
We get the following performance profiling table for the eager-mode model (omitting some columns):
------------------------- ------------ ------------ ------------
Name CPU total % CPU total # of Calls
------------------------- ------------ ------------ ------------
aten::addmm 45.73% 370.814ms 362
aten::add 19.89% 161.276ms 363
aten::copy_ 14.97% 121.416ms 488
aten::mul 9.02% 73.154ms 194
aten::clamp_min 8.81% 71.444ms 96
aten::bmm 5.46% 44.258ms 48
ProfilerStep* 100.00% 810.920ms 1
aten::div 2.89% 23.447ms 24
aten::_softmax 1.00% 8.087ms 24
aten::linear 46.48% 376.888ms 362
aten::clone 2.77% 22.430ms 98
aten::t 0.31% 2.502ms 362
aten::view 0.14% 1.161ms 850
aten::transpose 0.17% 1.377ms 386
aten::index_select 0.12% 952.000us 3
aten::expand 0.12% 986.000us 458
aten::matmul 8.31% 67.420ms 48
aten::cat 0.09% 703.000us 1
aten::as_strided 0.08% 656.000us 963
aten::relu 8.86% 71.864ms 96
------------------------- ------------ ------------ ------------
Self CPU time total: 810.920ms
Similarly, we also get the table for the compiled model with Inductor (omitting some columns):
----------------------------------------------- ------------ ------------ ------------
Name CPU total % CPU total # of Calls
----------------------------------------------- ------------ ------------ ------------
mkl::_mkl_linear 68.79% 231.573ms 362
aten::bmm 8.02% 26.992ms 48
ProfilerStep* 100.00% 336.642ms 1
graph_0_cpp_fused_constant_pad_nd_embedding_0 0.27% 915.000us 1
aten::empty 0.27% 911.000us 362
graph_0_cpp_fused__mkl_linear_add_mul_relu_151 0.27% 901.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_226 0.27% 899.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_361 0.27% 898.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_121 0.27% 895.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_31 0.27% 893.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_76 0.26% 892.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_256 0.26% 892.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_346 0.26% 892.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_241 0.26% 891.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_316 0.26% 891.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_91 0.26% 890.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_106 0.26% 890.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_211 0.26% 890.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_61 0.26% 889.000us 1
graph_0_cpp_fused__mkl_linear_add_mul_relu_286 0.26% 889.000us 1
----------------------------------------------- ------------ ------------ ------------
Self CPU time total: 336.642ms
From the profiling table of the eager model, we can see the most time consumption ops are [aten::addmm
, aten::add
, aten::copy_
, aten::mul
, aten::clamp_min
, aten::bmm
].
Comparing with the inductor model profiling table, we notice an mkl::_mkl_linear
entry and multiple fused kernels in the form graph_0_cpp_fused_*
. They are the major
optimizations that the inductor model is doing. Let us discuss them separately.
(1) Regarding mkl::_mkl_linear
: You may notice the number of calls to this kernel is 362, which is exactly the same as aten::linear
in the eager model profiling table.
The CPU total of aten::linear
is 376.888ms, while it is 231.573ms for mkl::_mkl_linear
. This suggests a ~1.63x for the “linear” part.
The speedup mainly comes from packing the weight tensor to block memory format
and invoking cblas_sgemm_compute within the Inductor CPU backend
to have a better cache behavior during GEMM computation.
(2) Regarding other memory-intensive ops: The end-to-end latency for the eager/inductor model is 802/339ms in our testing. So we can roughly infer that the speed up for the other memory-intensive ops is around 3.94x.
Let’s read the generated code to understand how the inductor achieves this impressive optimization. You can find the generated code by
searching cpp_fused__mkl_linear_add_mul_relu_151
in output_code.py
cpp_fused__mkl_linear_add_mul_relu_151 = async_compile.cpp('''
#include <ATen/record_function.h>
#include "/tmp/torchinductor_root/lr/clrlgu27q4ggd472umdzwsu6qcpqxcuusjxqvx2hwitjbujiiz7z.h"
extern "C" void kernel(float* in_out_ptr0,
const float* in_ptr0,
const float* in_ptr1,
const float* in_ptr2,
const float* in_ptr3)
{
RECORD_FUNCTION("graph_0_cpp_fused__mkl_linear_add_mul_relu_151", c10::ArrayRef<c10::IValue>({}));
#pragma omp parallel num_threads(32)
{
{
#pragma omp for
for(long i0=static_cast<long>(0L); i0<static_cast<long>(16384L); i0+=static_cast<long>(1L))
{
for(long i1=static_cast<long>(0L); i1<static_cast<long>(512L); i1+=static_cast<long>(8L))
{
auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<long>(i1 + (512L*i0)));
auto tmp1 = at::vec::Vectorized<float>::loadu(in_ptr1 + static_cast<long>(i1));
auto tmp3 = at::vec::Vectorized<float>::loadu(in_out_ptr0 + static_cast<long>(i1 + (512L*i0)));
auto tmp5 = at::vec::Vectorized<float>::loadu(in_ptr2 + static_cast<long>(i1));
auto tmp7 = at::vec::Vectorized<float>::loadu(in_ptr3 + static_cast<long>(i1));
auto tmp2 = tmp0 + tmp1;
auto tmp4 = tmp2 + tmp3;
auto tmp6 = tmp4 * tmp5;
auto tmp8 = tmp6 + tmp7;
tmp8.store(in_out_ptr0 + static_cast<long>(i1 + (512L*i0)));
}
}
}
}
}''')
From the generated code above, we can see this kernel has done a typical Loop Fusion on [add, add, mul, add]
.
This is a memory-bound bottle neck preventing good performance. To get a more intuitive feeling about this optimization,
we can infer the sizes and stride of the inputs and further benchmark this [add, add, mul, add]
pattern.
# bench.py
def func(arg_0, arg_1, arg_2, arg_3, arg_4):
add_0 = arg_0 + arg_1
add_1 = add_0 + arg_2
mul_1 = add_1 * arg_3
add_2 = mul_1 + arg_4
arg_2 = add_2
return arg_2
arg_0 = torch.rand(16384, 512)
arg_1 = torch.rand(1, 512)
arg_2 = torch.zeros(16384, 512)
arg_3 = torch.rand(1, 512)
arg_4 = torch.rand(1, 512)
input = (arg_0, arg_1, arg_2, arg_3, arg_4)
inductor_func = torch.compile(func)
with torch.no_grad():
inductor_func(*input)
import timeit
NUM_ITERS=100
with torch.no_grad():
# warmup
for _ in range(10):
func(*input)
eager_t = timeit.timeit("func(*input)", number=NUM_ITERS, globals=globals())
with torch.no_grad():
# warmup
for _ in range(10):
inductor_func(*input)
inductor_t = timeit.timeit("inductor_func(*input)", number=NUM_ITERS, globals=globals())
# print(f"eager use: {eager_t * 1000 / NUM_ITERS} ms/iter")
# print(f"inductor use: {inductor_t * 1000 / NUM_ITERS} ms/iter")
# print(f"speed up ratio: {eager_t / inductor_t}")
Output:
eager use: 5.780875144992024 ms/iter
inductor use: 0.9588955780491233 ms/iter
speed up ratio: 6.0286805751604735
This is just an example. The profiling table shows all element-wise op are fused within the inductor automatically in this model. You can read more kernels in output_code.py
Conclusion¶
The document gives an in-depth tutorial for the Inductor CPU backend.
With motivating examples, we walk through the process of debugging and profiling. The main idea is to narrow down the problem.
We demonstrate step by step the way to delve deeper the issue and find the root cause of failures, with the help of debugging logging and the tool Minifier. Firstly determine which component the failure occurs in and then try to generate the smallest snippet of code that can reproduce the failure.
When the performance with Inductor is better than that of eager mode, we provide a solid analytical method for performance profiling. We show how to find the time-consuming hotspot with PyTorch Profiler and figure out the operator-level or kernel-level reason to explain the phenomenon.
Total running time of the script: ( 9 minutes 39.621 seconds)