Shortcuts

Spatial Transformer Networks Tutorial

Author: Ghassen HAMROUNI

../_images/FSeq.png

In this tutorial, you will learn how to augment your network using a visual attention mechanism called spatial transformer networks. You can read more about the spatial transformer networks in the DeepMind paper

Spatial transformer networks are a generalization of differentiable attention to any spatial transformation. Spatial transformer networks (STN for short) allow a neural network to learn how to perform spatial transformations on the input image in order to enhance the geometric invariance of the model. For example, it can crop a region of interest, scale and correct the orientation of an image. It can be a useful mechanism because CNNs are not invariant to rotation and scale and more general affine transformations.

One of the best things about STN is the ability to simply plug it into any existing CNN with very little modification.

# License: BSD
# Author: Ghassen Hamrouni

from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np

plt.ion()   # interactive mode

Loading the data

In this post we experiment with the classic MNIST dataset. Using a standard convolutional network augmented with a spatial transformer network.

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Training dataset
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='.', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])), batch_size=64, shuffle=True, num_workers=4)
# Test dataset
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='.', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])), batch_size=64, shuffle=True, num_workers=4)

Out:

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./MNIST/raw/train-images-idx3-ubyte.gz
Extracting ./MNIST/raw/train-images-idx3-ubyte.gz to ./MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ./MNIST/raw/train-labels-idx1-ubyte.gz to ./MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./MNIST/raw/t10k-images-idx3-ubyte.gz
Extracting ./MNIST/raw/t10k-images-idx3-ubyte.gz to ./MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./MNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting ./MNIST/raw/t10k-labels-idx1-ubyte.gz to ./MNIST/raw
Processing...
Done!

Depicting spatial transformer networks

Spatial transformer networks boils down to three main components :

  • The localization network is a regular CNN which regresses the transformation parameters. The transformation is never learned explicitly from this dataset, instead the network learns automatically the spatial transformations that enhances the global accuracy.
  • The grid generator generates a grid of coordinates in the input image corresponding to each pixel from the output image.
  • The sampler uses the parameters of the transformation and applies it to the input image.
../_images/stn-arch.png

Note

We need the latest version of PyTorch that contains affine_grid and grid_sample modules.

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

        # Spatial transformer localization-network
        self.localization = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=7),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(8, 10, kernel_size=5),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True)
        )

        # Regressor for the 3 * 2 affine matrix
        self.fc_loc = nn.Sequential(
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            nn.Linear(32, 3 * 2)
        )

        # Initialize the weights/bias with identity transformation
        self.fc_loc[2].weight.data.zero_()
        self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

    # Spatial transformer network forward function
    def stn(self, x):
        xs = self.localization(x)
        xs = xs.view(-1, 10 * 3 * 3)
        theta = self.fc_loc(xs)
        theta = theta.view(-1, 2, 3)

        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)

        return x

    def forward(self, x):
        # transform the input
        x = self.stn(x)

        # Perform the usual forward pass
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


model = Net().to(device)

Training the model

Now, let’s use the SGD algorithm to train the model. The network is learning the classification task in a supervised way. In the same time the model is learning STN automatically in an end-to-end fashion.

optimizer = optim.SGD(model.parameters(), lr=0.01)


def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 500 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
#
# A simple test procedure to measure STN the performances on MNIST.
#


def test():
    with torch.no_grad():
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)

            # sum up batch loss
            test_loss += F.nll_loss(output, target, size_average=False).item()
            # get the index of the max log-probability
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

        test_loss /= len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
              .format(test_loss, correct, len(test_loader.dataset),
                      100. * correct / len(test_loader.dataset)))

Visualizing the STN results

Now, we will inspect the results of our learned visual attention mechanism.

We define a small helper function in order to visualize the transformations while training.

def convert_image_np(inp):
    """Convert a Tensor to numpy image."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    return inp

# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.


def visualize_stn():
    with torch.no_grad():
        # Get a batch of training data
        data = next(iter(test_loader))[0].to(device)

        input_tensor = data.cpu()
        transformed_input_tensor = model.stn(data).cpu()

        in_grid = convert_image_np(
            torchvision.utils.make_grid(input_tensor))

        out_grid = convert_image_np(
            torchvision.utils.make_grid(transformed_input_tensor))

        # Plot the results side-by-side
        f, axarr = plt.subplots(1, 2)
        axarr[0].imshow(in_grid)
        axarr[0].set_title('Dataset Images')

        axarr[1].imshow(out_grid)
        axarr[1].set_title('Transformed Images')

for epoch in range(1, 20 + 1):
    train(epoch)
    test()

# Visualize the STN transformation on some input batch
visualize_stn()

plt.ioff()
plt.show()
../_images/sphx_glr_spatial_transformer_tutorial_001.png

Out:

Train Epoch: 1 [0/60000 (0%)]   Loss: 2.290877
Train Epoch: 1 [32000/60000 (53%)]      Loss: 0.899239

Test set: Average loss: 0.2380, Accuracy: 9338/10000 (93%)

Train Epoch: 2 [0/60000 (0%)]   Loss: 0.507462
Train Epoch: 2 [32000/60000 (53%)]      Loss: 0.283516

Test set: Average loss: 0.1320, Accuracy: 9598/10000 (96%)

Train Epoch: 3 [0/60000 (0%)]   Loss: 0.392243
Train Epoch: 3 [32000/60000 (53%)]      Loss: 0.224828

Test set: Average loss: 0.1153, Accuracy: 9645/10000 (96%)

Train Epoch: 4 [0/60000 (0%)]   Loss: 0.196909
Train Epoch: 4 [32000/60000 (53%)]      Loss: 0.146634

Test set: Average loss: 0.0760, Accuracy: 9756/10000 (98%)

Train Epoch: 5 [0/60000 (0%)]   Loss: 0.433332
Train Epoch: 5 [32000/60000 (53%)]      Loss: 0.671509

Test set: Average loss: 0.0788, Accuracy: 9751/10000 (98%)

Train Epoch: 6 [0/60000 (0%)]   Loss: 0.094854
Train Epoch: 6 [32000/60000 (53%)]      Loss: 0.064428

Test set: Average loss: 0.0793, Accuracy: 9757/10000 (98%)

Train Epoch: 7 [0/60000 (0%)]   Loss: 0.141482
Train Epoch: 7 [32000/60000 (53%)]      Loss: 0.424260

Test set: Average loss: 0.0721, Accuracy: 9799/10000 (98%)

Train Epoch: 8 [0/60000 (0%)]   Loss: 0.041268
Train Epoch: 8 [32000/60000 (53%)]      Loss: 0.094954

Test set: Average loss: 0.0651, Accuracy: 9805/10000 (98%)

Train Epoch: 9 [0/60000 (0%)]   Loss: 0.209594
Train Epoch: 9 [32000/60000 (53%)]      Loss: 0.108409

Test set: Average loss: 0.0897, Accuracy: 9746/10000 (97%)

Train Epoch: 10 [0/60000 (0%)]  Loss: 0.103565
Train Epoch: 10 [32000/60000 (53%)]     Loss: 0.265981

Test set: Average loss: 0.0525, Accuracy: 9844/10000 (98%)

Train Epoch: 11 [0/60000 (0%)]  Loss: 0.088581
Train Epoch: 11 [32000/60000 (53%)]     Loss: 0.284057

Test set: Average loss: 0.0587, Accuracy: 9825/10000 (98%)

Train Epoch: 12 [0/60000 (0%)]  Loss: 0.092687
Train Epoch: 12 [32000/60000 (53%)]     Loss: 0.139014

Test set: Average loss: 0.0493, Accuracy: 9852/10000 (99%)

Train Epoch: 13 [0/60000 (0%)]  Loss: 0.206693
Train Epoch: 13 [32000/60000 (53%)]     Loss: 0.158024

Test set: Average loss: 0.0525, Accuracy: 9838/10000 (98%)

Train Epoch: 14 [0/60000 (0%)]  Loss: 0.299593
Train Epoch: 14 [32000/60000 (53%)]     Loss: 0.194455

Test set: Average loss: 0.0643, Accuracy: 9821/10000 (98%)

Train Epoch: 15 [0/60000 (0%)]  Loss: 0.083197
Train Epoch: 15 [32000/60000 (53%)]     Loss: 0.065529

Test set: Average loss: 0.0544, Accuracy: 9841/10000 (98%)

Train Epoch: 16 [0/60000 (0%)]  Loss: 0.052844
Train Epoch: 16 [32000/60000 (53%)]     Loss: 0.124855

Test set: Average loss: 0.0456, Accuracy: 9864/10000 (99%)

Train Epoch: 17 [0/60000 (0%)]  Loss: 0.082883
Train Epoch: 17 [32000/60000 (53%)]     Loss: 0.081848

Test set: Average loss: 0.0462, Accuracy: 9856/10000 (99%)

Train Epoch: 18 [0/60000 (0%)]  Loss: 0.062832
Train Epoch: 18 [32000/60000 (53%)]     Loss: 0.157968

Test set: Average loss: 0.0589, Accuracy: 9832/10000 (98%)

Train Epoch: 19 [0/60000 (0%)]  Loss: 0.241559
Train Epoch: 19 [32000/60000 (53%)]     Loss: 0.216732

Test set: Average loss: 0.0564, Accuracy: 9822/10000 (98%)

Train Epoch: 20 [0/60000 (0%)]  Loss: 0.181614
Train Epoch: 20 [32000/60000 (53%)]     Loss: 0.014595

Test set: Average loss: 0.0430, Accuracy: 9866/10000 (99%)

Total running time of the script: ( 1 minutes 42.305 seconds)

Gallery generated by Sphinx-Gallery

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources