Note
Click here to download the full example code
Using User-Defined Triton Kernels with torch.compile
¶
Author: Oguz Ulgen
User-defined Triton kernels can be used to optimize specific parts of your
model’s computation. These kernels are written in Triton’s language, which is designed
to make it easier to achieve peak hardware performance. By using user-defined Triton
kernels with torch.compile
, you can integrate these optimized computations into
your PyTorch model, potentially achieving significant performance improvements.
This recipes demonstrates how you can use user-defined Triton kernels with torch.compile
.
Prerequisites¶
Before starting this recipe, make sure that you have the following:
Basic understanding of
torch.compile
and Triton. See:PyTorch 2.3 or later
A GPU that supports Triton
import torch
from torch.utils._triton import has_triton
Basic Usage¶
In this example, we will use a simple vector addition kernel from the Triton documentation
with torch.compile
.
For reference, see Triton documentation.
if not has_triton():
print("Skipping because triton is not supported on this device.")
else:
import triton
from triton import language as tl
@triton.jit
def add_kernel(
in_ptr0,
in_ptr1,
out_ptr,
n_elements,
BLOCK_SIZE: "tl.constexpr",
):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(in_ptr0 + offsets, mask=mask)
y = tl.load(in_ptr1 + offsets, mask=mask)
output = x + y
tl.store(out_ptr + offsets, output, mask=mask)
@torch.compile(fullgraph=True)
def add_fn(x, y):
output = torch.zeros_like(x)
n_elements = output.numel()
grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=4)
return output
x = torch.randn(4, device="cuda")
y = torch.randn(4, device="cuda")
out = add_fn(x, y)
print(f"Vector addition of\nX:\t{x}\nY:\t{y}\nis equal to\n{out}")
Vector addition of
X: tensor([ 0.1940, 2.1614, -0.1721, 0.8491], device='cuda:0')
Y: tensor([ 0.1391, -0.1082, -0.7174, 0.7566], device='cuda:0')
is equal to
tensor([ 0.3332, 2.0532, -0.8895, 1.6057], device='cuda:0')
Advanced Usage¶
Triton’s autotune feature is a powerful tool that automatically optimizes the configuration parameters of your Triton kernels. It explores a range of possible configurations and selects the one that delivers the best performance for your specific use case.
When used with torch.compile
, triton.autotune
can help ensure that your PyTorch
model is running as efficiently as possible. Here is an example of using torch.compile
and triton.autotune
.
Note
torch.compile
only supports configs and key arguments to triton.autotune
.
if not has_triton():
print("Skipping because triton is not supported on this device.")
else:
import triton
from triton import language as tl
@triton.autotune(
configs=[
triton.Config({"BLOCK_SIZE": 4}, num_stages=3, num_warps=8),
triton.Config({"BLOCK_SIZE": 4}, num_stages=4, num_warps=4),
triton.Config({"BLOCK_SIZE": 2}, num_stages=3, num_warps=8),
triton.Config({"BLOCK_SIZE": 2}, num_stages=4, num_warps=4),
],
key=[],
)
@triton.jit
def add_kernel_autotuned(
in_ptr0,
in_ptr1,
out_ptr,
n_elements,
BLOCK_SIZE: "tl.constexpr",
):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(in_ptr0 + offsets, mask=mask)
y = tl.load(in_ptr1 + offsets, mask=mask)
output = x + y
tl.store(out_ptr + offsets, output, mask=mask)
@torch.compile(fullgraph=True)
def add_fn(x, y):
output = torch.zeros_like(x)
n_elements = output.numel()
grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
add_kernel_autotuned[grid](x, y, output, n_elements)
return output
x = torch.randn(4, device="cuda")
y = torch.randn(4, device="cuda")
out = add_fn(x, y)
print(f"Vector addition of\nX:\t{x}\nY:\t{y}\nis equal to\n{out}")
Vector addition of
X: tensor([-0.5187, 1.2268, 0.6255, -0.9117], device='cuda:0')
Y: tensor([-0.6974, -1.8688, -0.8832, -1.6627], device='cuda:0')
is equal to
tensor([-1.2161, -0.6421, -0.2577, -2.5744], device='cuda:0')
Composibility and Limitations¶
As of PyTorch 2.3, the support for user-defined Triton kernels in torch.compile
includes dynamic shapes, torch.autograd.Function
, JIT inductor, and AOT inductor.
You can use these features together to build complex, high-performance models.
However, there are certain limitations to be aware of:
Tensor Subclasses: Currently, there is no support for tensor subclasses and other advanced features.
Triton Features: While
triton.heuristics
can be used either standalone or beforetriton.autotune
, it cannot be used after`triton.autotune
. This implies that iftriton.heuristics
andtriton.autotune
are to be used together,triton.heuristics
must be used first.
Conclusion¶
In this recipe, we explored how to utilize user-defined Triton kernels
with torch.compile
. We delved into the basic usage of a simple
vector addition kernel and advanced usage involving Triton’s autotune
feature. We also discussed the composability of user-defined Triton
kernels with other PyTorch features and highlighted some current limitations.
See Also¶
Total running time of the script: ( 0 minutes 0.867 seconds)