Note
Click here to download the full example code
torch.export
AOTInductor Tutorial for Python runtime (Beta)¶
Created On: Aug 23, 2024 | Last Updated: Jan 24, 2025 | Last Verified: Nov 05, 2024
Author: Ankith Gunapal, Bin Bao, Angela Yi
Warning
torch._inductor.aoti_compile_and_package
and
torch._inductor.aoti_load_package
are in Beta status and are subject
to backwards compatibility breaking changes. This tutorial provides an
example of how to use these APIs for model deployment using Python
runtime.
It has been shown previously how AOTInductor can be used to do Ahead-of-Time compilation of PyTorch exported models by creating an artifact that can be run in a non-Python environment. In this tutorial, you will learn an end-to-end example of how to use AOTInductor for Python runtime.
Contents
Prerequisites¶
PyTorch 2.6 or later
Basic understanding of
torch.export
and AOTInductorComplete the AOTInductor: Ahead-Of-Time Compilation for Torch.Export-ed Models tutorial
What you will learn¶
How to use AOTInductor for Python runtime.
How to use
torch._inductor.aoti_compile_and_package()
along withtorch.export.export()
to generate a compiled artifactHow to load and run the artifact in a Python runtime using
torch._export.aot_load()
.When to you use AOTInductor with a Python runtime
Model Compilation¶
We will use the TorchVision pretrained ResNet18
model as an example.
The first step is to export the model to a graph representation using
torch.export.export()
. To learn more about using this function, you can
check out the docs or the
tutorial.
Once we have exported the PyTorch model and obtained an ExportedProgram
,
we can apply torch._inductor.aoti_compile_and_package()
to AOTInductor
to compile the program to a specified device, and save the generated contents
into a “.pt2” artifact.
Note
This API supports the same available options that torch.compile()
has, such as mode
and max_autotune
(for those who want to enable
CUDA graphs and leverage Triton based matrix multiplications and
convolutions)
import os
import torch
import torch._inductor
from torchvision.models import ResNet18_Weights, resnet18
model = resnet18(weights=ResNet18_Weights.DEFAULT)
model.eval()
with torch.inference_mode():
inductor_configs = {}
if torch.cuda.is_available():
device = "cuda"
inductor_configs["max_autotune"] = True
else:
device = "cpu"
model = model.to(device=device)
example_inputs = (torch.randn(2, 3, 224, 224, device=device),)
exported_program = torch.export.export(
model,
example_inputs,
)
path = torch._inductor.aoti_compile_and_package(
exported_program,
package_path=os.path.join(os.getcwd(), "resnet18.pt2"),
inductor_configs=inductor_configs
)
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth
0%| | 0.00/44.7M [00:00<?, ?B/s]
92%|#########2| 41.2M/44.7M [00:00<00:00, 432MB/s]
100%|##########| 44.7M/44.7M [00:00<00:00, 430MB/s]
AUTOTUNE convolution(2x3x224x224, 64x3x7x7)
convolution 0.0529 ms 100.0%
triton_convolution2d_4 0.1393 ms 38.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_0 0.1491 ms 35.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_3 0.1813 ms 29.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_5 0.2457 ms 21.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_2 0.5344 ms 9.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8
triton_convolution2d_1 0.8916 ms 5.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=7, KERNEL_W=7, PADDING_H=3, PADDING_W=3, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
SingleProcess AUTOTUNE benchmarking takes 0.8922 seconds and 0.0046 seconds precompiling for 7 choices
AUTOTUNE convolution(2x64x56x56, 64x64x3x3)
triton_convolution2d_10 0.0360 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_6 0.0362 ms 99.4% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_11 0.0365 ms 98.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_9 0.0417 ms 86.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
convolution 0.0462 ms 77.8%
triton_convolution2d_12 0.0647 ms 55.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_7 0.0766 ms 47.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_8 0.1263 ms 28.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.9382 seconds and 0.0007 seconds precompiling for 8 choices
AUTOTUNE convolution(2x64x56x56, 128x64x3x3)
triton_convolution2d_38 0.0291 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_39 0.0400 ms 72.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
convolution 0.0458 ms 63.5%
triton_convolution2d_34 0.0477 ms 60.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_37 0.0602 ms 48.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_40 0.0617 ms 47.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_35 0.0714 ms 40.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_36 0.1341 ms 21.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.9403 seconds and 0.0006 seconds precompiling for 8 choices
AUTOTUNE convolution(2x128x28x28, 128x128x3x3)
convolution 0.0439 ms 100.0%
triton_convolution2d_45 0.0496 ms 88.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_46 0.0702 ms 62.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_41 0.0843 ms 52.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_44 0.1043 ms 42.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_47 0.1168 ms 37.6% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_42 0.1393 ms 31.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_43 0.2417 ms 18.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.9529 seconds and 0.0007 seconds precompiling for 8 choices
AUTOTUNE convolution(2x64x56x56, 128x64x1x1)
triton_convolution2d_52 0.0088 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
triton_convolution2d_53 0.0100 ms 87.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
triton_convolution2d_48 0.0108 ms 81.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
triton_convolution2d_51 0.0132 ms 66.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
triton_convolution2d_54 0.0133 ms 66.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
convolution 0.0136 ms 64.5%
triton_convolution2d_49 0.0148 ms 59.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
triton_convolution2d_50 0.0219 ms 40.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.9228 seconds and 0.0007 seconds precompiling for 8 choices
AUTOTUNE convolution(2x128x28x28, 256x128x3x3)
convolution 0.0377 ms 100.0%
triton_convolution2d_73 0.0489 ms 77.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_74 0.1111 ms 33.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_72 0.1129 ms 33.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_75 0.1164 ms 32.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_69 0.1326 ms 28.4% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_70 0.1342 ms 28.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_71 0.2041 ms 18.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.9555 seconds and 0.0005 seconds precompiling for 8 choices
AUTOTUNE convolution(2x256x14x14, 256x256x3x3)
convolution 0.0563 ms 100.0%
triton_convolution2d_80 0.0915 ms 61.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_79 0.2096 ms 26.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_81 0.2143 ms 26.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_82 0.2266 ms 24.8% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_76 0.2547 ms 22.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_77 0.2722 ms 20.7% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_78 0.3741 ms 15.0% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.9741 seconds and 0.0006 seconds precompiling for 8 choices
AUTOTUNE convolution(2x128x28x28, 256x128x1x1)
triton_convolution2d_87 0.0110 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
triton_convolution2d_86 0.0189 ms 57.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
triton_convolution2d_89 0.0195 ms 56.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
triton_convolution2d_88 0.0196 ms 56.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
triton_convolution2d_84 0.0216 ms 50.9% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
triton_convolution2d_83 0.0222 ms 49.4% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
convolution 0.0260 ms 42.2%
triton_convolution2d_85 0.0267 ms 41.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=1024, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8
SingleProcess AUTOTUNE benchmarking takes 0.9265 seconds and 0.0007 seconds precompiling for 8 choices
AUTOTUNE convolution(2x256x14x14, 512x256x3x3)
convolution 0.0579 ms 100.0%
triton_convolution2d_108 0.0930 ms 62.3% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_109 0.2182 ms 26.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_107 0.2212 ms 26.2% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_110 0.2256 ms 25.7% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_106 0.2393 ms 24.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=1, num_warps=8
triton_convolution2d_105 0.2599 ms 22.3% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_104 0.2610 ms 22.2% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=2, STRIDE_W=2, UNROLL=False, num_stages=2, num_warps=4
SingleProcess AUTOTUNE benchmarking takes 0.9697 seconds and 0.0006 seconds precompiling for 8 choices
AUTOTUNE convolution(2x512x7x7, 512x512x3x3)
convolution 0.0851 ms 100.0%
triton_convolution2d_115 0.1793 ms 47.4% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_113 0.2155 ms 39.5% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=16, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=1, num_warps=8
triton_convolution2d_117 0.2665 ms 31.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_112 0.3222 ms 26.4% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=128, BLOCK_N=64, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
triton_convolution2d_114 0.4036 ms 21.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_116 0.4275 ms 19.9% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=8
triton_convolution2d_111 0.5131 ms 16.6% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=3, KERNEL_W=3, PADDING_H=1, PADDING_W=1, STRIDE_H=1, STRIDE_W=1, UNROLL=False, num_stages=2, num_warps=4
SingleProcess AUTOTUNE benchmarking takes 0.9919 seconds and 0.0007 seconds precompiling for 8 choices
AUTOTUNE convolution(2x256x14x14, 512x256x1x1)
triton_convolution2d_122 0.0152 ms 100.0% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
triton_convolution2d_120 0.0266 ms 57.1% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=512, BLOCK_N=16, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=1, num_warps=8
convolution 0.0286 ms 53.0%
triton_convolution2d_121 0.0307 ms 49.5% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
triton_convolution2d_124 0.0309 ms 49.1% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
triton_convolution2d_118 0.0312 ms 48.6% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
triton_convolution2d_123 0.0315 ms 48.2% ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=64, BLOCK_N=256, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=8
triton_convolution2d_119 0.0334 ms 45.4% ALLOW_TF32=True, BLOCK_K=16, BLOCK_M=256, BLOCK_N=64, GROUPS=1, KERNEL_H=1, KERNEL_W=1, PADDING_H=0, PADDING_W=0, STRIDE_H=2, STRIDE_W=2, UNROLL=True, num_stages=2, num_warps=4
SingleProcess AUTOTUNE benchmarking takes 0.9277 seconds and 0.0007 seconds precompiling for 8 choices
AUTOTUNE addmm(2x1000, 2x512, 512x1000)
triton_mm_146 0.0114 ms 100.0% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=64, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4
triton_mm_141 0.0116 ms 97.8% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=4
triton_mm_153 0.0118 ms 96.5% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=4, num_warps=4
triton_mm_142 0.0119 ms 95.4% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=2
triton_mm_143 0.0122 ms 93.2% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=5, num_warps=2
triton_mm_152 0.0126 ms 90.3% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=16, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4
triton_mm_140 0.0133 ms 85.3% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=128, BLOCK_M=16, BLOCK_N=32, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=2, num_warps=2
triton_mm_150 0.0135 ms 84.3% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=64, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4
triton_mm_149 0.0137 ms 82.9% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=4, num_warps=8
triton_mm_148 0.0144 ms 78.9% ACC_TYPE='tl.float32', ALLOW_TF32=True, BLOCK_K=32, BLOCK_M=16, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4
SingleProcess AUTOTUNE benchmarking takes 1.7555 seconds and 0.0023 seconds precompiling for 18 choices
The result of aoti_compile_and_package()
is an artifact “resnet18.pt2”
which can be loaded and executed in Python and C++.
The artifact itself contains a bunch of AOTInductor generated code, such as a generated C++ runner file, a shared library compiled from the C++ file, and CUDA binary files, aka cubin files, if optimizing for CUDA.
Structure-wise, the artifact is a structured .zip
file, with the following
specification:
We can use the following command to inspect the artifact contents:
$ unzip -l resnet18.pt2
Archive: resnet18.pt2
Length Date Time Name
--------- ---------- ----- ----
1 01-08-2025 16:40 version
3 01-08-2025 16:40 archive_format
10088 01-08-2025 16:40 data/aotinductor/model/cagzt6akdaczvxwtbvqe34otfe5jlorktbqlojbzqjqvbfsjlge4.cubin
17160 01-08-2025 16:40 data/aotinductor/model/c6oytfjmt5w4c7onvtm6fray7clirxt7q5xjbwx3hdydclmwoujz.cubin
16616 01-08-2025 16:40 data/aotinductor/model/c7ydp7nocyz323hij4tmlf2kcedmwlyg6r57gaqzcsy3huneamu6.cubin
17776 01-08-2025 16:40 data/aotinductor/model/cyqdf46ordevqhiddvpdpp3uzwatfbzdpl3auj2nx23uxvplnne2.cubin
10856 01-08-2025 16:40 data/aotinductor/model/cpzfebfgrusqslui7fxsuoo4tvwulmrxirc5tmrpa4mvrbdno7kn.cubin
14608 01-08-2025 16:40 data/aotinductor/model/c5ukeoz5wmaszd7vczdz2qhtt6n7tdbl3b6wuy4rb2se24fjwfoy.cubin
11376 01-08-2025 16:40 data/aotinductor/model/csu3nstcp56tsjfycygaqsewpu64l5s6zavvz7537cm4s4cv2k3r.cubin
10984 01-08-2025 16:40 data/aotinductor/model/cp76lez4glmgq7gedf2u25zvvv6rksv5lav4q22dibd2zicbgwj3.cubin
14736 01-08-2025 16:40 data/aotinductor/model/c2bb5p6tnwz4elgujqelsrp3unvkgsyiv7xqxmpvuxcm4jfl7pc2.cubin
11376 01-08-2025 16:40 data/aotinductor/model/c6eopmb2b4ngodwsayae4r5q6ni3jlfogfbdk3ypg56tgpzhubfy.cubin
11624 01-08-2025 16:40 data/aotinductor/model/chmwe6lvoekzfowdbiizitm3haiiuad5kdm6sd2m6mv6dkn2zk32.cubin
15632 01-08-2025 16:40 data/aotinductor/model/c3jop5g344hj3ztsu4qm6ibxyaaerlhkzh2e6emak23rxfje6jam.cubin
25472 01-08-2025 16:40 data/aotinductor/model/chaiixybeiuuitm2nmqnxzijzwgnn2n7uuss4qmsupgblfh3h5hk.cubin
139389 01-08-2025 16:40 data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t.cpp
27 01-08-2025 16:40 data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t_metadata.json
47195424 01-08-2025 16:40 data/aotinductor/model/cvk6qzuybruhwxtfblzxiov3rlrziv5fkqc4mdhbmantfu3lmd6t.so
--------- -------
47523148 18 files
Model Inference in Python¶
To load and run the artifact in Python, we can use torch._inductor.aoti_load_package()
.
import os
import torch
import torch._inductor
model_path = os.path.join(os.getcwd(), "resnet18.pt2")
compiled_model = torch._inductor.aoti_load_package(model_path)
example_inputs = (torch.randn(2, 3, 224, 224, device=device),)
with torch.inference_mode():
output = compiled_model(example_inputs)
When to use AOTInductor with a Python Runtime¶
There are mainly two reasons why one would use AOTInductor with a Python Runtime:
torch._inductor.aoti_compile_and_package
generates a singular serialized artifact. This is useful for model versioning for deployments and tracking model performance over time.With
torch.compile()
being a JIT compiler, there is a warmup cost associated with the first compilation. Your deployment needs to account for the compilation time taken for the first inference. With AOTInductor, the compilation is done ahead of time usingtorch.export.export
andtorch._inductor.aoti_compile_and_package
. At deployment time, after loading the model, running inference does not have any additional cost.
The section below shows the speedup achieved with AOTInductor for first inference
We define a utility function timed
to measure the time taken for inference
import time
def timed(fn):
# Returns the result of running `fn()` and the time it took for `fn()` to run,
# in seconds. We use CUDA events and synchronization for accurate
# measurement on CUDA enabled devices.
if torch.cuda.is_available():
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
else:
start = time.time()
result = fn()
if torch.cuda.is_available():
end.record()
torch.cuda.synchronize()
else:
end = time.time()
# Measure time taken to execute the function in miliseconds
if torch.cuda.is_available():
duration = start.elapsed_time(end)
else:
duration = (end - start) * 1000
return result, duration
Lets measure the time for first inference using AOTInductor
torch._dynamo.reset()
model = torch._inductor.aoti_load_package(model_path)
example_inputs = (torch.randn(1, 3, 224, 224, device=device),)
with torch.inference_mode():
_, time_taken = timed(lambda: model(example_inputs))
print(f"Time taken for first inference for AOTInductor is {time_taken:.2f} ms")
Time taken for first inference for AOTInductor is 4.21 ms
Lets measure the time for first inference using torch.compile
torch._dynamo.reset()
model = resnet18(weights=ResNet18_Weights.DEFAULT).to(device)
model.eval()
model = torch.compile(model)
example_inputs = torch.randn(1, 3, 224, 224, device=device)
with torch.inference_mode():
_, time_taken = timed(lambda: model(example_inputs))
print(f"Time taken for first inference for torch.compile is {time_taken:.2f} ms")
Time taken for first inference for torch.compile is 5612.03 ms
We see that there is a drastic speedup in first inference time using AOTInductor compared
to torch.compile
Conclusion¶
In this recipe, we have learned how to effectively use the AOTInductor for Python runtime by
compiling and loading a pretrained ResNet18
model. This process
demonstrates the practical application of generating a compiled artifact and
running it within a Python environment. We also looked at the advantage of using
AOTInductor in model deployments, with regards to speed up in first inference time.
Total running time of the script: ( 1 minutes 2.127 seconds)