(prototype) PyTorch 2 Export Quantization-Aware Training (QAT)¶
Created On: Oct 02, 2023 | Last Updated: Oct 23, 2024 | Last Verified: Nov 05, 2024
Author: Andrew Or
This tutorial shows how to perform quantization-aware training (QAT) in graph mode based on torch.export.export. For more details about PyTorch 2 Export Quantization in general, refer to the post training quantization tutorial.
The PyTorch 2 Export QAT flow looks like the following—it is similar to the post training quantization (PTQ) flow for the most part:
import torch
from torch._export import capture_pre_autograd_graph
from torch.ao.quantization.quantize_pt2e import (
prepare_qat_pt2e,
convert_pt2e,
)
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
XNNPACKQuantizer,
get_symmetric_quantization_config,
)
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 10)
def forward(self, x):
return self.linear(x)
example_inputs = (torch.randn(1, 5),)
m = M()
# Step 1. program capture
# This is available for pytorch 2.5+, for more details on lower pytorch versions
# please check `Export the model with torch.export` section
m = torch.export.export_for_training(m, example_inputs).module()
# we get a model with aten ops
# Step 2. quantization-aware training
# backend developer will write their own Quantizer and expose methods to allow
# users to express how they want the model to be quantized
quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config())
m = prepare_qat_pt2e(m, quantizer)
# train omitted
m = convert_pt2e(m)
# we have a model with aten ops doing integer computations when possible
# move the quantized model to eval mode, equivalent to `m.eval()`
torch.ao.quantization.move_exported_model_to_eval(m)
Note that calling model.eval()
or model.train()
after program capture is
not allowed, because these methods no longer correctly change the behavior of
certain ops like dropout and batch normalization. Instead, please use
torch.ao.quantization.move_exported_model_to_eval()
and
torch.ao.quantization.move_exported_model_to_train()
(coming soon)
respectively.
Define Helper Functions and Prepare the Dataset¶
To run the code in this tutorial using the entire ImageNet dataset, first
download ImageNet by following the instructions in
ImageNet Data. Unzip the downloaded file
into the data_path
folder.
Next, download the torchvision resnet18 model
and rename it to data/resnet18_pretrained_float.pth
.
We’ll start by doing the necessary imports, defining some helper functions and prepare the data. These steps are very similar to the ones defined in the static eager mode post training quantization tutorial:
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision
from torchvision import datasets
from torchvision.models.resnet import resnet18
import torchvision.transforms as transforms
# Set up warnings
import warnings
warnings.filterwarnings(
action='ignore',
category=DeprecationWarning,
module=r'.*'
)
warnings.filterwarnings(
action='default',
module=r'torch.ao.quantization'
)
# Specify random seed for repeatable results
_ = torch.manual_seed(191009)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""
Computes the accuracy over the k top predictions for the specified
values of k.
"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def evaluate(model, criterion, data_loader, device):
torch.ao.quantization.move_exported_model_to_eval(model)
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
cnt = 0
with torch.no_grad():
for image, target in data_loader:
image = image.to(device)
target = target.to(device)
output = model(image)
loss = criterion(output, target)
cnt += 1
acc1, acc5 = accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], image.size(0))
top5.update(acc5[0], image.size(0))
print('')
return top1, top5
def load_model(model_file):
model = resnet18(pretrained=False)
state_dict = torch.load(model_file, weights_only=True)
model.load_state_dict(state_dict)
return model
def print_size_of_model(model):
if isinstance(model, torch.jit.RecursiveScriptModule):
torch.jit.save(model, "temp.p")
else:
torch.jit.save(torch.jit.script(model), "temp.p")
print("Size (MB):", os.path.getsize("temp.p")/1e6)
os.remove("temp.p")
def prepare_data_loaders(data_path):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
dataset = torchvision.datasets.ImageNet(
data_path, split="train", transform=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
dataset_test = torchvision.datasets.ImageNet(
data_path, split="val", transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=train_batch_size,
sampler=train_sampler)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=eval_batch_size,
sampler=test_sampler)
return data_loader, data_loader_test
def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
# Note: do not call model.train() here, since this doesn't work on an exported model.
# Instead, call `torch.ao.quantization.move_exported_model_to_train(model)`, which will
# be added in the near future
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
avgloss = AverageMeter('Loss', '1.5f')
cnt = 0
for image, target in data_loader:
start_time = time.time()
print('.', end = '')
cnt += 1
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], image.size(0))
top5.update(acc5[0], image.size(0))
avgloss.update(loss, image.size(0))
if cnt >= ntrain_batches:
print('Loss', avgloss.avg)
print('Training: * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return
print('Full imagenet train set: * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
.format(top1=top1, top5=top5))
return
data_path = '~/.data/imagenet'
saved_model_dir = 'data/'
float_model_file = 'resnet18_pretrained_float.pth'
train_batch_size = 32
eval_batch_size = 32
data_loader, data_loader_test = prepare_data_loaders(data_path)
example_inputs = (next(iter(data_loader))[0])
criterion = nn.CrossEntropyLoss()
float_model = load_model(saved_model_dir + float_model_file).to("cuda")
Export the model with torch.export¶
Here is how you can use torch.export
to export the model:
from torch._export import capture_pre_autograd_graph
example_inputs = (torch.rand(2, 3, 224, 224),)
# for pytorch 2.5+
exported_model = torch.export.export_for_training(float_model, example_inputs).module()
# for pytorch 2.4 and before
# from torch._export import capture_pre_autograd_graph
# exported_model = capture_pre_autograd_graph(model_to_quantize, example_inputs)
# or, to capture with dynamic dimensions:
# for pytorch 2.5+
dynamic_shapes = tuple(
{0: torch.export.Dim("dim")} if i == 0 else None
for i in range(len(example_inputs))
)
exported_model = torch.export.export_for_training(float_model, example_inputs, dynamic_shapes=dynamic_shapes).module()
# for pytorch 2.4 and before
# dynamic_shape API may vary as well
# from torch._export import dynamic_dim
# example_inputs = (torch.rand(2, 3, 224, 224),)
# exported_model = capture_pre_autograd_graph(
# float_model,
# example_inputs,
# constraints=[dynamic_dim(example_inputs[0], 0)],
# )
Import the Backend Specific Quantizer and Configure how to Quantize the Model¶
The following code snippets describe how to quantize the model:
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
XNNPACKQuantizer,
get_symmetric_quantization_config,
)
quantizer = XNNPACKQuantizer()
quantizer.set_global(get_symmetric_quantization_config(is_qat=True))
Quantizer
is backend specific, and each Quantizer
will provide their
own way to allow users to configure their model.
Note
Check out our
tutorial
that describes how to write a new Quantizer
.
Prepare the Model for Quantization-Aware Training¶
prepare_qat_pt2e
inserts fake quantizes in appropriate places in the model
and performs the appropriate QAT “fusions”, such as Conv2d
+ BatchNorm2d
,
for better training accuracies. The fused operations are represented as a subgraph
of ATen ops in the prepared graph.
prepared_model = prepare_qat_pt2e(exported_model, quantizer)
print(prepared_model)
Note
If your model contains batch normalization, the actual ATen ops you get
in the graph depend on the model’s device when you export the model.
If the model is on CPU, then you’ll get torch.ops.aten._native_batch_norm_legit
.
If the model is on CUDA, then you’ll get torch.ops.aten.cudnn_batch_norm
.
However, this is not fundamental and may be subject to change in the future.
Between these two ops, it has been shown that torch.ops.aten.cudnn_batch_norm
provides better numerics on models like MobileNetV2. To get this op, either
call model.cuda()
before export, or run the following after prepare to manually
swap the ops:
for n in prepared_model.graph.nodes:
if n.target == torch.ops.aten._native_batch_norm_legit.default:
n.target = torch.ops.aten.cudnn_batch_norm.default
prepared_model.recompile()
In the future, we plan to consolidate the batch normalization ops such that the above will no longer be necessary.
Training Loop¶
The training loop is similar to the ones in previous versions of QAT. To achieve
better accuracies, you may optionally disable observers and updating batch
normalization statistics after a certain number of epochs, or evaluate the QAT
or the quantized model trained so far every N
epochs.
num_epochs = 10
num_train_batches = 20
num_eval_batches = 20
num_observer_update_epochs = 4
num_batch_norm_update_epochs = 3
num_epochs_between_evals = 2
# QAT takes time and one needs to train over a few epochs.
# Train and check accuracy after each epoch
for nepoch in range(num_epochs):
train_one_epoch(prepared_model, criterion, optimizer, data_loader, "cuda", num_train_batches)
# Optionally disable observer/batchnorm stats after certain number of epochs
if epoch >= num_observer_update_epochs:
print("Disabling observer for subseq epochs, epoch = ", epoch)
prepared_model.apply(torch.ao.quantization.disable_observer)
if epoch >= num_batch_norm_update_epochs:
print("Freezing BN for subseq epochs, epoch = ", epoch)
for n in prepared_model.graph.nodes:
# Args: input, weight, bias, running_mean, running_var, training, momentum, eps
# We set the `training` flag to False here to freeze BN stats
if n.target in [
torch.ops.aten._native_batch_norm_legit.default,
torch.ops.aten.cudnn_batch_norm.default,
]:
new_args = list(n.args)
new_args[5] = False
n.args = new_args
prepared_model.recompile()
# Check the quantized accuracy every N epochs
# Note: If you wish to just evaluate the QAT model (not the quantized model),
# then you can just call `torch.ao.quantization.move_exported_model_to_eval/train`.
# However, the latter API is not ready yet and will be available in the near future.
if (nepoch + 1) % num_epochs_between_evals == 0:
prepared_model_copy = copy.deepcopy(prepared_model)
quantized_model = convert_pt2e(prepared_model_copy)
top1, top5 = evaluate(quantized_model, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Epoch %d: Evaluation accuracy on %d images, %2.2f' % (nepoch, num_eval_batches * eval_batch_size, top1.avg))
Saving and Loading Model Checkpoints¶
Model checkpoints for the PyTorch 2 Export QAT flow are the same as in any other training flow. They are useful for pausing training and resuming it later, recovering from failed training runs, and performing inference on different machines at a later time. You can save model checkpoints during or after training as follows:
checkpoint_path = "/path/to/my/checkpoint_%s.pth" % nepoch
torch.save(prepared_model.state_dict(), "checkpoint_path")
To load the checkpoints, you must export and prepare the model the exact same way it was initially exported and prepared. For example:
from torch._export import capture_pre_autograd_graph
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
XNNPACKQuantizer,
get_symmetric_quantization_config,
)
from torchvision.models.resnet import resnet18
example_inputs = (torch.rand(2, 3, 224, 224),)
float_model = resnet18(pretrained=False)
exported_model = capture_pre_autograd_graph(float_model, example_inputs)
quantizer = XNNPACKQuantizer()
quantizer.set_global(get_symmetric_quantization_config(is_qat=True))
prepared_model = prepare_qat_pt2e(exported_model, quantizer)
prepared_model.load_state_dict(torch.load(checkpoint_path))
# resume training or perform inference
Convert the Trained Model to a Quantized Model¶
convert_pt2e
takes a calibrated model and produces a quantized model.
Note that, before inference, you must first call
torch.ao.quantization.move_exported_model_to_eval()
to ensure certain ops
like dropout behave correctly in the eval graph. Otherwise, we would continue
to incorrectly apply dropout in the forward pass during inference, for example.
quantized_model = convert_pt2e(prepared_model)
# move certain ops like dropout to eval mode, equivalent to `m.eval()`
torch.ao.quantization.move_exported_model_to_eval(m)
print(quantized_model)
top1, top5 = evaluate(quantized_model, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Final evaluation accuracy on %d images, %2.2f' % (num_eval_batches * eval_batch_size, top1.avg))
Conclusion¶
In this tutorial, we demonstrated how to run Quantization-Aware Training (QAT) flow in PyTorch 2 Export Quantization. After convert, the rest of the flow is the same as Post-Training Quantization (PTQ); the user can serialize/deserialize the model and further lower it to a backend that supports inference with XNNPACK backend. For more detail, follow the PTQ tutorial.