torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False) → Tensor

Constructs a tensor with data.


torch.tensor() always copies data. If you have a Tensor data and want to avoid a copy, use torch.Tensor.requires_grad_() or torch.Tensor.detach(). If you have a NumPy ndarray and want to avoid a copy, use torch.as_tensor().


When data is a tensor x, torch.tensor() reads out ‘the data’ from whatever it is passed, and constructs a leaf variable. Therefore torch.tensor(x) is equivalent to x.clone().detach() and torch.tensor(x, requires_grad=True) is equivalent to x.clone().detach().requires_grad_(True). The equivalents using clone() and detach() are recommended.

  • data (array_like) – Initial data for the tensor. Can be a list, tuple, NumPy ndarray, scalar, and other types.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, infers data type from data.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

  • pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False.


>>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
tensor([[ 0.1000,  1.2000],
        [ 2.2000,  3.1000],
        [ 4.9000,  5.2000]])

>>> torch.tensor([0, 1])  # Type inference on data
tensor([ 0,  1])

>>> torch.tensor([[0.11111, 0.222222, 0.3333333]],
                 device=torch.device('cuda:0'))  # creates a torch.cuda.DoubleTensor
tensor([[ 0.1111,  0.2222,  0.3333]], dtype=torch.float64, device='cuda:0')

>>> torch.tensor(3.14159)  # Create a scalar (zero-dimensional tensor)

>>> torch.tensor([])  # Create an empty tensor (of size (0,))


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources