Autograd in C++ Frontend¶
Created On: Apr 01, 2020 | Last Updated: Sep 12, 2022 | Last Verified: Not Verified
The autograd
package is crucial for building highly flexible and dynamic neural
networks in PyTorch. Most of the autograd APIs in PyTorch Python frontend are also available
in C++ frontend, allowing easy translation of autograd code from Python to C++.
In this tutorial explore several examples of doing autograd in PyTorch C++ frontend. Note that this tutorial assumes that you already have a basic understanding of autograd in Python frontend. If that’s not the case, please first read Autograd: Automatic Differentiation.
Basic autograd operations¶
(Adapted from this tutorial)
Create a tensor and set torch::requires_grad()
to track computation with it
auto x = torch::ones({2, 2}, torch::requires_grad());
std::cout << x << std::endl;
Out:
1 1
1 1
[ CPUFloatType{2,2} ]
Do a tensor operation:
auto y = x + 2;
std::cout << y << std::endl;
Out:
3 3
3 3
[ CPUFloatType{2,2} ]
y
was created as a result of an operation, so it has a grad_fn
.
std::cout << y.grad_fn()->name() << std::endl;
Out:
AddBackward1
Do more operations on y
auto z = y * y * 3;
auto out = z.mean();
std::cout << z << std::endl;
std::cout << z.grad_fn()->name() << std::endl;
std::cout << out << std::endl;
std::cout << out.grad_fn()->name() << std::endl;
Out:
27 27
27 27
[ CPUFloatType{2,2} ]
MulBackward1
27
[ CPUFloatType{} ]
MeanBackward0
.requires_grad_( ... )
changes an existing tensor’s requires_grad
flag in-place.
auto a = torch::randn({2, 2});
a = ((a * 3) / (a - 1));
std::cout << a.requires_grad() << std::endl;
a.requires_grad_(true);
std::cout << a.requires_grad() << std::endl;
auto b = (a * a).sum();
std::cout << b.grad_fn()->name() << std::endl;
Out:
false
true
SumBackward0
Let’s backprop now. Because out
contains a single scalar, out.backward()
is equivalent to out.backward(torch::tensor(1.))
.
out.backward();
Print gradients d(out)/dx
std::cout << x.grad() << std::endl;
Out:
4.5000 4.5000
4.5000 4.5000
[ CPUFloatType{2,2} ]
You should have got a matrix of 4.5
. For explanations on how we arrive at this value,
please see the corresponding section in this tutorial.
Now let’s take a look at an example of vector-Jacobian product:
x = torch::randn(3, torch::requires_grad());
y = x * 2;
while (y.norm().item<double>() < 1000) {
y = y * 2;
}
std::cout << y << std::endl;
std::cout << y.grad_fn()->name() << std::endl;
Out:
-1021.4020
314.6695
-613.4944
[ CPUFloatType{3} ]
MulBackward1
If we want the vector-Jacobian product, pass the vector to backward
as argument:
auto v = torch::tensor({0.1, 1.0, 0.0001}, torch::kFloat);
y.backward(v);
std::cout << x.grad() << std::endl;
Out:
102.4000
1024.0000
0.1024
[ CPUFloatType{3} ]
You can also stop autograd from tracking history on tensors that require gradients
either by putting torch::NoGradGuard
in a code block
std::cout << x.requires_grad() << std::endl;
std::cout << x.pow(2).requires_grad() << std::endl;
{
torch::NoGradGuard no_grad;
std::cout << x.pow(2).requires_grad() << std::endl;
}
Out:
true
true
false
Or by using .detach()
to get a new tensor with the same content but that does
not require gradients:
std::cout << x.requires_grad() << std::endl;
y = x.detach();
std::cout << y.requires_grad() << std::endl;
std::cout << x.eq(y).all().item<bool>() << std::endl;
Out:
true
false
true
For more information on C++ tensor autograd APIs such as grad
/ requires_grad
/
is_leaf
/ backward
/ detach
/ detach_
/ register_hook
/ retain_grad
,
please see the corresponding C++ API docs.
Computing higher-order gradients in C++¶
One of the applications of higher-order gradients is calculating gradient penalty.
Let’s see an example of it using torch::autograd::grad
:
#include <torch/torch.h>
auto model = torch::nn::Linear(4, 3);
auto input = torch::randn({3, 4}).requires_grad_(true);
auto output = model(input);
// Calculate loss
auto target = torch::randn({3, 3});
auto loss = torch::nn::MSELoss()(output, target);
// Use norm of gradients as penalty
auto grad_output = torch::ones_like(output);
auto gradient = torch::autograd::grad({output}, {input}, /*grad_outputs=*/{grad_output}, /*create_graph=*/true)[0];
auto gradient_penalty = torch::pow((gradient.norm(2, /*dim=*/1) - 1), 2).mean();
// Add gradient penalty to loss
auto combined_loss = loss + gradient_penalty;
combined_loss.backward();
std::cout << input.grad() << std::endl;
Out:
-0.1042 -0.0638 0.0103 0.0723
-0.2543 -0.1222 0.0071 0.0814
-0.1683 -0.1052 0.0355 0.1024
[ CPUFloatType{3,4} ]
Please see the documentation for torch::autograd::backward
(link)
and torch::autograd::grad
(link)
for more information on how to use them.
Using custom autograd function in C++¶
(Adapted from this tutorial)
Adding a new elementary operation to torch::autograd
requires implementing a new torch::autograd::Function
subclass for each operation. torch::autograd::Function
s are what torch::autograd
uses to compute the results and gradients, and encode the operation history. Every
new function requires you to implement 2 methods: forward
and backward
, and
please see this link
for the detailed requirements.
Below you can find code for a Linear
function from torch::nn
:
#include <torch/torch.h>
using namespace torch::autograd;
// Inherit from Function
class LinearFunction : public Function<LinearFunction> {
public:
// Note that both forward and backward are static functions
// bias is an optional argument
static torch::Tensor forward(
AutogradContext *ctx, torch::Tensor input, torch::Tensor weight, torch::Tensor bias = torch::Tensor()) {
ctx->save_for_backward({input, weight, bias});
auto output = input.mm(weight.t());
if (bias.defined()) {
output += bias.unsqueeze(0).expand_as(output);
}
return output;
}
static tensor_list backward(AutogradContext *ctx, tensor_list grad_outputs) {
auto saved = ctx->get_saved_variables();
auto input = saved[0];
auto weight = saved[1];
auto bias = saved[2];
auto grad_output = grad_outputs[0];
auto grad_input = grad_output.mm(weight);
auto grad_weight = grad_output.t().mm(input);
auto grad_bias = torch::Tensor();
if (bias.defined()) {
grad_bias = grad_output.sum(0);
}
return {grad_input, grad_weight, grad_bias};
}
};
Then, we can use the LinearFunction
in the following way:
auto x = torch::randn({2, 3}).requires_grad_();
auto weight = torch::randn({4, 3}).requires_grad_();
auto y = LinearFunction::apply(x, weight);
y.sum().backward();
std::cout << x.grad() << std::endl;
std::cout << weight.grad() << std::endl;
Out:
0.5314 1.2807 1.4864
0.5314 1.2807 1.4864
[ CPUFloatType{2,3} ]
3.7608 0.9101 0.0073
3.7608 0.9101 0.0073
3.7608 0.9101 0.0073
3.7608 0.9101 0.0073
[ CPUFloatType{4,3} ]
Here, we give an additional example of a function that is parametrized by non-tensor arguments:
#include <torch/torch.h>
using namespace torch::autograd;
class MulConstant : public Function<MulConstant> {
public:
static torch::Tensor forward(AutogradContext *ctx, torch::Tensor tensor, double constant) {
// ctx is a context object that can be used to stash information
// for backward computation
ctx->saved_data["constant"] = constant;
return tensor * constant;
}
static tensor_list backward(AutogradContext *ctx, tensor_list grad_outputs) {
// We return as many input gradients as there were arguments.
// Gradients of non-tensor arguments to forward must be `torch::Tensor()`.
return {grad_outputs[0] * ctx->saved_data["constant"].toDouble(), torch::Tensor()};
}
};
Then, we can use the MulConstant
in the following way:
auto x = torch::randn({2}).requires_grad_();
auto y = MulConstant::apply(x, 5.5);
y.sum().backward();
std::cout << x.grad() << std::endl;
Out:
5.5000
5.5000
[ CPUFloatType{2} ]
For more information on torch::autograd::Function
, please see
its documentation.
Translating autograd code from Python to C++¶
On a high level, the easiest way to use autograd in C++ is to have working autograd code in Python first, and then translate your autograd code from Python to C++ using the following table:
Python |
C++ |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
After translation, most of your Python autograd code should just work in C++. If that’s not the case, please file a bug report at GitHub issues and we will fix it as soon as possible.
Conclusion¶
You should now have a good overview of PyTorch’s C++ autograd API. You can find the code examples displayed in this note here. As always, if you run into any problems or have questions, you can use our forum or GitHub issues to get in touch.