Source code for ts.torch_handler.unit_tests.test_image_classifier
# pylint: disable=W0621
# Using the same name as global function is part of pytest
"""
Basic unit test for ImageClassifier class.
Ensures it can load and execute an example model
"""
import sys
from pathlib import Path
import pytest
from torchvision.models.resnet import ResNet18_Weights
from ts.torch_handler.image_classifier import ImageClassifier
from .test_utils.mock_context import MockContext
from .test_utils.model_dir import copy_files, download_model
REPO_DIR = Path(__file__).parents[3]
[docs]@pytest.fixture(scope="module")
def image_bytes():
with open(
REPO_DIR.joinpath(
"examples/image_classifier/resnet_152_batch/images/kitten.jpg"
).as_posix(),
"rb",
) as fin:
image_bytes = fin.read()
yield image_bytes
[docs]@pytest.fixture(scope="module")
def model_dir(tmp_path_factory, model_name):
model_dir = tmp_path_factory.mktemp("image_classifier_model_dir")
src_dir = REPO_DIR.joinpath("examples/image_classifier/resnet_18/")
model_url = ResNet18_Weights.DEFAULT.url
download_model(model_url, model_dir)
files = {
"model.py": model_name + ".py",
"index_to_name.json": "index_to_name.json",
}
copy_files(src_dir, model_dir, files)
sys.path.append(model_dir.as_posix())
yield model_dir
sys.path.pop()
[docs]@pytest.fixture(scope="module")
def context(model_dir, model_name):
context = MockContext(
model_name="mnist",
model_dir=model_dir.as_posix(),
model_file=model_name + ".py",
)
yield context
[docs]@pytest.fixture(scope="module")
def handler(context):
handler = ImageClassifier()
handler.initialize(context)
return handler
[docs]def test_handle(context, image_bytes, handler):
test_data = [{"data": image_bytes}] * 2
results = handler.handle(test_data, context)
assert len(results) == 2
assert "tiger_cat" in results[0]
[docs]def test_handle_explain(context, image_bytes, handler):
context.explain = True
test_data = [{"data": image_bytes, "target": 0}] * 2
results = handler.handle(test_data, context)
assert len(results) == 2
assert results[0]