Shortcuts

DLA

DLA NVIDIA Deep Learning Accelerator is a fixed-function accelerator engine targeted for deep learning operations. DLA is designed to do full hardware acceleration of convolutional neural networks. DLA supports various layers such as convolution, deconvolution, fully-connected, activation, pooling, batch normalization, etc. torch_tensorrt supports compilation of TorchScript Module and deployment pipeline on the DLA hardware available on NVIDIA embedded platforms.

NOTE: DLA supports fp16 and int8 precision only.

Using DLA with torchtrtc

torchtrtc [input_file_path] [output_file_path] [input_shapes...] -p f16 -d dla {OPTIONS}

Using DLA in a C++ application

std::vector<std::vector<int64_t>> input_shape = {{32, 3, 32, 32}};
auto compile_spec = torch_tensorrt::CompileSpec({input_shape});

# Set a precision. DLA supports fp16 or int8 only
compile_spec.enabled_precisions = {torch::kF16};
compile_spec.device.device_type = torch_tensorrt::CompileSpec::DeviceType::kDLA;

# Make sure the gpu id is set to Xavier id for DLA
compile_spec.device.gpu_id = 0;

# Set the DLA core id
compile_spec.device.dla_core = 1;

# If a layer fails to run on DLA it will fallback to GPU
compile_spec.device.allow_gpu_fallback = true;

Using DLA in a python application

compile_spec = {
    "inputs": [torch_tensorrt.Input(self.input.shape)],
    "device": torch_tensorrt.Device("dla:0", allow_gpu_fallback=True),
    "enabled_precisions": {torch.half},
}

trt_mod = torch_tensorrt.compile(self.scripted_model, compile_spec)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources