Note
Go to the end to download the full example code
Compiling Llama2 using the dynamo backend¶
This script illustrates Torch-TensorRT workflow with dynamo backend on popular Llama2 model.
Imports and Model Definition¶
import torch
import torch_tensorrt
from transformers import AutoModelForCausalLM, AutoTokenizer
from utils import export_llm, generate
Define the parameters and initialize the model
MAX_TOKENS = 32
DEVICE = torch.device("cuda:0")
# Define the Llama2 model from hugging face
# kv_cache is not supported in Torch-TRT currently.
# CPU is used here so that GPU memory is reserved for TRT compilation.
llama_path = "meta-llama/Llama-2-7b-chat-hf"
with torch.no_grad():
model = (
AutoModelForCausalLM.from_pretrained(
llama_path, use_cache=False, attn_implementation="eager"
)
.eval()
.half()
)
tokenizer = AutoTokenizer.from_pretrained(llama_path)
Tokenize a sample input prompt and get pytorch model outputs
prompt = "What is dynamic programming?"
model_inputs = tokenizer(prompt, return_tensors="pt")
input_ids = model_inputs.input_ids
# Auto-regressive generation loop for greedy decoding using PyTorch model
# We use a custom generate function which is very similar to the huggingface one.
pyt_gen_tokens = generate(model, input_ids, MAX_TOKENS, tokenizer.eos_token_id)
Compilation with Torch-TensorRT using dynamo backend and generate TensorRT outputs¶
# Export the llama2 model into an ExportedProgram which is input of TRT compilation
# To compile the model in FP16, we do the following
# 1) Cast the model to FP16 via model.half()
# 2) Enable use_explicit_typing=True. Certain layers are explicitly casted to FP32 within the pytorch model and this flag respects this behavior during TRT compilation
# 3) Enable use_fp32_acc=True. This ensures all the matmuls are accumulated in FP32 precision (similar to PyTorch)
llama2_ep = export_llm(model, input_ids, max_seq_len=64)
trt_model = torch_tensorrt.dynamo.compile(
llama2_ep,
inputs=[input_ids],
enabled_precisions={torch.float32},
truncate_double=True,
device=DEVICE,
disable_tf32=True,
use_explicit_typing=True,
use_fp32_acc=True,
)
# Auto-regressive generation loop for greedy decoding using TensorRT model
# We use a custom generate function which is very similar to the huggingface one.
# Move inputs to GPU
input_ids = input_ids.to(DEVICE)
trt_gen_tokens = generate(trt_model, input_ids, MAX_TOKENS, tokenizer.eos_token_id)
Decode the output sentences of PyTorch and TensorRT¶
print("=============================")
print(
"Pytorch model generated text: ",
tokenizer.batch_decode(
pyt_gen_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0],
)
print("=============================")
print(
"TensorRT model generated text: ",
tokenizer.batch_decode(
trt_gen_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0],
)
# Prompt : What is dynamic programming?
# =============================
# Pytorch model generated text: Dynamic programming is an algorithmic technique used to solve complex problems by breaking them down into smaller subproblems, solving each subproblem only once, and
# =============================
# TensorRT model generated text: Dynamic programming is an algorithmic technique used to solve complex problems by breaking them down into smaller subproblems, solving each subproblem only once, and
Total running time of the script: ( 0 minutes 0.000 seconds)