Operators Supported¶
Operators Currently Supported Through Converters¶
aten::_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> (Tensor)
aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> (Tensor)
aten::abs(Tensor self) -> (Tensor)
aten::acos(Tensor self) -> (Tensor)
aten::acosh(Tensor self) -> (Tensor)
aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor)
aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor)
aten::adaptive_avg_pool3d(Tensor self, int[3] output_size) -> (Tensor)
aten::adaptive_max_pool1d(Tensor self, int[2] output_size) -> (Tensor, Tensor)
aten::adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)
aten::adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor)
aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)
aten::add.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor)
aten::add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> (Tensor(a!))
aten::argmax(Tensor self, int dim, bool keepdim=False) -> (Tensor)
aten::argmin(Tensor self, int dim, bool keepdim=False) -> (Tensor)
aten::asin(Tensor self) -> (Tensor)
aten::asinh(Tensor self) -> (Tensor)
aten::atan(Tensor self) -> (Tensor)
aten::atanh(Tensor self) -> (Tensor)
aten::avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], bool ceil_mode=False, bool count_include_pad=True) -> (Tensor)
aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor)
aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor)
aten::batch_norm(Tensor input, Tensor? gamma, Tensor? beta, Tensor? mean, Tensor? var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor)
aten::bitwise_not(Tensor self) -> (Tensor)
aten::bmm(Tensor self, Tensor mat2) -> (Tensor)
aten::cat(Tensor[] tensors, int dim=0) -> (Tensor)
aten::ceil(Tensor self) -> (Tensor)
aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor)
aten::clamp_max(Tensor self, Scalar max) -> (Tensor)
aten::clamp_min(Tensor self, Scalar min) -> (Tensor)
aten::constant_pad_nd(Tensor self, int[] pad, Scalar value=0) -> (Tensor)
aten::cos(Tensor self) -> (Tensor)
aten::cosh(Tensor self) -> (Tensor)
aten::cumsum(Tensor self, int dim, *, int? dtype=None) -> (Tensor)
aten::div.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::div.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> (Tensor)
aten::div_.Scalar(Tensor(a!) self, Scalar other) -> (Tensor(a!))
aten::div_.Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!))
aten::elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> (Tensor)
aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)
aten::eq.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::eq.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::erf(Tensor self) -> (Tensor)
aten::exp(Tensor self) -> (Tensor)
aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> (Tensor(a))
aten::expand_as(Tensor(a) self, Tensor other) -> (Tensor(a))
aten::fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor)
aten::fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor)
aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor)
aten::floor(Tensor self) -> (Tensor)
aten::floor_divide(Tensor self, Tensor other) -> (Tensor)
aten::floor_divide.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::ge.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::ge.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor)
aten::gt.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::gt.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor)
aten::hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor(a!))
aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)
aten::instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> (Tensor)
aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? gamma, Tensor? beta, float eps, bool cudnn_enabled) -> (Tensor)
aten::le.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::le.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> (Tensor)
aten::leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> (Tensor(a!))
aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> (Tensor)
aten::log(Tensor self) -> (Tensor)
aten::lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor)
aten::lt.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::lt.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> (Tensor)
aten::matmul(Tensor self, Tensor other) -> (Tensor)
aten::max(Tensor self) -> (Tensor)
aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::max.other(Tensor self, Tensor other) -> (Tensor)
aten::max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[], int[1] dilation=[], bool ceil_mode=False) -> (Tensor)
aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor)
aten::max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], int[3] dilation=[], bool ceil_mode=False) -> (Tensor)
aten::mean(Tensor self, *, int? dtype=None) -> (Tensor)
aten::mean.dim(Tensor self, int[] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)
aten::min(Tensor self) -> (Tensor)
aten::min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::min.other(Tensor self, Tensor other) -> (Tensor)
aten::mul.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::mul.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::mul_.Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!))
aten::narrow(Tensor(a) self, int dim, int start, int length) -> (Tensor(a))
aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> (Tensor(a))
aten::ne.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::ne.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::neg(Tensor self) -> (Tensor)
aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> (Tensor)
aten::permute(Tensor(a) self, int[] dims) -> (Tensor(a))
aten::pixel_shuffle(Tensor self, int upscale_factor) -> (Tensor)
aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor)
aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor)
aten::prelu(Tensor self, Tensor weight) -> (Tensor)
aten::prod(Tensor self, *, int? dtype=None) -> (Tensor)
aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)
aten::reciprocal(Tensor self) -> (Tensor)
aten::reflection_pad1d(Tensor self, int[2] padding) -> (Tensor)
aten::reflection_pad2d(Tensor self, int[4] padding) -> (Tensor)
aten::relu(Tensor input) -> (Tensor)
aten::relu_(Tensor(a!) self) -> (Tensor(a!))
aten::repeat(Tensor self, int[] repeats) -> (Tensor)
aten::repeat_interleave.self_int(Tensor self, int repeats, int? dim=None, *, int? output_size=None) -> (Tensor)
aten::replication_pad1d(Tensor self, int[2] padding) -> (Tensor)
aten::replication_pad2d(Tensor self, int[4] padding) -> (Tensor)
aten::replication_pad3d(Tensor self, int[6] padding) -> (Tensor)
aten::reshape(Tensor self, int[] shape) -> (Tensor)
aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)
aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)
aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor)
aten::scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> (Tensor)
aten::scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> (Tensor)
aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))
aten::sigmoid(Tensor input) -> (Tensor)
aten::sigmoid_(Tensor(a!) self) -> (Tensor(a!))
aten::sin(Tensor self) -> (Tensor)
aten::sinh(Tensor self) -> (Tensor)
aten::slice.Tensor(Tensor(a) self, int dim=0, int? start=None, int? end=None, int step=1) -> (Tensor(a))
aten::softmax.int(Tensor self, int dim, int? dtype=None) -> (Tensor)
aten::split(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[])
aten::split.Tensor(Tensor(a) self, int split_size, int dim=0) -> (Tensor[])
aten::split.sizes(Tensor(a -> *) self, int[] split_size, int dim=0) -> (Tensor[])
aten::split_with_sizes(Tensor(a) self, int[] split_sizes, int dim=0) -> (Tensor[])
aten::sqrt(Tensor self) -> (Tensor)
aten::square(Tensor self) -> (Tensor)
aten::squeeze.dim(Tensor(a) self, int dim) -> (Tensor(a))
aten::stack(Tensor[] tensors, int dim=0) -> (Tensor)
aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)
aten::sub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor)
aten::sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> (Tensor(a!))
aten::sum(Tensor self, *, int? dtype=None) -> (Tensor)
aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)
aten::t(Tensor self) -> (Tensor)
aten::tan(Tensor self) -> (Tensor)
aten::tanh(Tensor input) -> (Tensor)
aten::tanh_(Tensor(a!) self) -> (Tensor(a!))
aten::to.device(Tensor(a) self, Device device, int dtype, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a))
aten::to.dtype(Tensor self, int dtype, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor)
aten::to.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor)
aten::to.prim_Device(Tensor(a) self, Device? device, int? dtype=None, bool non_blocking=False, bool copy=False) -> (Tensor(a|b))
aten::topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices)
aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> (Tensor(a))
aten::unbind.int(Tensor(a -> *) self, int dim=0) -> (Tensor[])
aten::unsqueeze(Tensor(a) self, int dim) -> (Tensor(a))
aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::upsample_bilinear2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)
aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> (Tensor)
aten::upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)
aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor)
aten::upsample_nearest1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)
aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)
aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::upsample_nearest3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)
aten::upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::upsample_trilinear3d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)
aten::view(Tensor(a) self, int[] size) -> (Tensor(a))
trt::const(Tensor self) -> (Tensor)
Operators Currently Supported Through Evaluators¶
aten::Bool.float(float b) -> (bool)
aten::Bool.int(int a) -> (bool)
aten::Float.Scalar(Scalar a) -> float
aten::Float.bool(bool a) -> float
aten::Float.int(int a) -> float
aten::Int.Scalar(Scalar a) -> int
aten::Int.bool(bool a) -> int
aten::Int.float(float a) -> int
aten::Int.int(int a) -> int
aten::__and__(int a, int b) -> (bool)
aten::__and__.bool(bool a, bool b) -> (bool)
aten::__derive_index(int idx, int start, int step) -> int
aten::__getitem__.t(t[](a) list, int idx) -> (t(*))
aten::__is__(t1 self, t2 obj) -> bool
aten::__isnot__(t1 self, t2 obj) -> bool
aten::__not__(bool self) -> bool
aten::__or__(int a, int b) -> (bool)
aten::__range_length(int lo, int hi, int step) -> int
aten::__round_to_zero_floordiv(int a, int b) -> (int)
aten::__xor__(int a, int b) -> (bool)
aten::add.float(float a, float b) -> (float)
aten::add.int(int a, int b) -> (int)
aten::add.str(str a, str b) -> (str)
aten::add_.t(t[](a!) self, t[] b) -> (t[])
aten::append.t(t[](a!) self, t(c -> *) el) -> (t[](a!))
- aten::arange(Scalar end, *, int? dtype=None, int? layout=None,
Device? device=None, bool? pin_memory=None) -> (Tensor)
- aten::arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None,
Layout? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)
- aten::arange.start_step(Scalar start, Scalar end, Scalar step, *, ScalarType? dtype=None,
Layout? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)
aten::clone(Tensor self, *, int? memory_format=None) -> (Tensor)
aten::copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> (Tensor(a!))
aten::dim(Tensor self) -> int
aten::div.float(float a, float b) -> (float)
aten::div.int(int a, int b) -> (float)
aten::eq.bool(bool a, bool b) -> (bool)
aten::eq.float(float a, float b) -> (bool)
aten::eq.float_int(float a, int b) -> (bool)
aten::eq.int(int a, int b) -> (bool)
aten::eq.int_float(int a, float b) -> (bool)
aten::eq.str(str a, str b) -> (bool)
aten::extend.t(t[](a!) self, t[] other) -> ()
aten::floor.float(float a) -> (int)
aten::floor.int(int a) -> (int)
aten::floordiv.float(float a, float b) -> (int)
aten::floordiv.int(int a, int b) -> (int)
aten::format(str self, …) -> (str)
aten::ge.bool(bool a, bool b) -> (bool)
aten::ge.float(float a, float b) -> (bool)
aten::ge.float_int(float a, int b) -> (bool)
aten::ge.int(int a, int b) -> (bool)
aten::ge.int_float(int a, float b) -> (bool)
aten::gt.bool(bool a, bool b) -> (bool)
aten::gt.float(float a, float b) -> (bool)
aten::gt.float_int(float a, int b) -> (bool)
aten::gt.int(int a, int b) -> (bool)
aten::gt.int_float(int a, float b) -> (bool)
aten::is_floating_point(Tensor self) -> (bool)
aten::le.bool(bool a, bool b) -> (bool)
aten::le.float(float a, float b) -> (bool)
aten::le.float_int(float a, int b) -> (bool)
aten::le.int(int a, int b) -> (bool)
aten::le.int_float(int a, float b) -> (bool)
aten::len.t(t[] a) -> (int)
aten::lt.bool(bool a, bool b) -> (bool)
aten::lt.float(float a, float b) -> (bool)
aten::lt.float_int(float a, int b) -> (bool)
aten::lt.int(int a, int b) -> (bool)
aten::lt.int_float(int a, float b) -> (bool)
aten::mul.float(float a, float b) -> (float)
aten::mul.int(int a, int b) -> (int)
aten::ne.bool(bool a, bool b) -> (bool)
aten::ne.float(float a, float b) -> (bool)
aten::ne.float_int(float a, int b) -> (bool)
aten::ne.int(int a, int b) -> (bool)
aten::ne.int_float(int a, float b) -> (bool)
aten::neg.int(int a) -> (int)
aten::numel(Tensor self) -> int
aten::pow.float(float a, float b) -> (float)
aten::pow.float_int(float a, int b) -> (float)
aten::pow.int(int a, int b) -> (float)
aten::pow.int_float(int a, float b) -> (float)
aten::size(Tensor self) -> (int[])
aten::size.int(Tensor self, int dim) -> (int)
aten::slice.t(t[] l, int start, int end=9223372036854775807, int step=1) -> (t[])
aten::sqrt.float(float a) -> (float)
aten::sqrt.int(int a) -> (float)
aten::sub.float(float a, float b) -> (float)
aten::sub.int(int a, int b) -> (int)
aten::tensor(t[] data, *, int? dtype=None, Device? device=None, bool requires_grad=False) -> (Tensor)
prim::TupleIndex(Any tup, int i) -> (Any)
prim::dtype(Tensor a) -> (int)
prim::max.bool(bool a, bool b) -> (bool)
prim::max.float(float a, float b) -> (bool)
prim::max.float_int(float a, int b) -> (bool)
prim::max.int(int a, int b) -> (bool)
prim::max.int_float(int a, float b) -> (bool)
prim::max.self_int(int[] self) -> (int)
prim::min.bool(bool a, bool b) -> (bool)
prim::min.float(float a, float b) -> (bool)
prim::min.float_int(float a, int b) -> (bool)
prim::min.int(int a, int b) -> (bool)
prim::min.int_float(int a, float b) -> (bool)
prim::min.self_int(int[] self) -> (int)
prim::shape(Tensor a) -> (int[])