• Docs >
  • Compiling Stable Diffusion model using the torch.compile backend
Shortcuts

Compiling Stable Diffusion model using the torch.compile backend

This interactive script is intended as a sample of the Torch-TensorRT workflow with torch.compile on a Stable Diffusion model. A sample output is featured below:

../../../_images/majestic_castle.png

Imports and Model Definition

import torch
import torch_tensorrt
from diffusers import DiffusionPipeline

model_id = "CompVis/stable-diffusion-v1-4"
device = "cuda:0"

# Instantiate Stable Diffusion Pipeline with FP16 weights
pipe = DiffusionPipeline.from_pretrained(
    model_id, revision="fp16", torch_dtype=torch.float16
)
pipe = pipe.to(device)

backend = "torch_tensorrt"

# Optimize the UNet portion with Torch-TensorRT
pipe.unet = torch.compile(
    pipe.unet,
    backend=backend,
    options={
        "truncate_long_and_double": True,
        "enabled_precisions": {torch.float32, torch.float16},
    },
    dynamic=False,
)

Inference

prompt = "a majestic castle in the clouds"
image = pipe(prompt).images[0]

image.save("images/majestic_castle.png")
image.show()

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources