Source code for torchaudio.prototype.functional.functional
import math
import warnings
from typing import Optional
import torch
from torchaudio.functional.functional import _create_triangular_filterbank
def _hz_to_bark(freqs: float, bark_scale: str = "traunmuller") -> float:
r"""Convert Hz to Barks.
Args:
freqs (float): Frequencies in Hz
bark_scale (str, optional): Scale to use: ``traunmuller``, ``schroeder`` or ``wang``. (Default: ``traunmuller``)
Returns:
barks (float): Frequency in Barks
"""
if bark_scale not in ["schroeder", "traunmuller", "wang"]:
raise ValueError('bark_scale should be one of "schroeder", "traunmuller" or "wang".')
if bark_scale == "wang":
return 6.0 * math.asinh(freqs / 600.0)
elif bark_scale == "schroeder":
return 7.0 * math.asinh(freqs / 650.0)
# Traunmuller Bark scale
barks = ((26.81 * freqs) / (1960.0 + freqs)) - 0.53
# Bark value correction
if barks < 2:
barks += 0.15 * (2 - barks)
elif barks > 20.1:
barks += 0.22 * (barks - 20.1)
return barks
def _bark_to_hz(barks: torch.Tensor, bark_scale: str = "traunmuller") -> torch.Tensor:
"""Convert bark bin numbers to frequencies.
Args:
barks (torch.Tensor): Bark frequencies
bark_scale (str, optional): Scale to use: ``traunmuller``,``schroeder`` or ``wang``. (Default: ``traunmuller``)
Returns:
freqs (torch.Tensor): Barks converted in Hz
"""
if bark_scale not in ["schroeder", "traunmuller", "wang"]:
raise ValueError('bark_scale should be one of "traunmuller", "schroeder" or "wang".')
if bark_scale == "wang":
return 600.0 * torch.sinh(barks / 6.0)
elif bark_scale == "schroeder":
return 650.0 * torch.sinh(barks / 7.0)
# Bark value correction
if any(barks < 2):
idx = barks < 2
barks[idx] = (barks[idx] - 0.3) / 0.85
elif any(barks > 20.1):
idx = barks > 20.1
barks[idx] = (barks[idx] + 4.422) / 1.22
# Traunmuller Bark scale
freqs = 1960 * ((barks + 0.53) / (26.28 - barks))
return freqs
def _hz_to_octs(freqs, tuning=0.0, bins_per_octave=12):
a440 = 440.0 * 2.0 ** (tuning / bins_per_octave)
return torch.log2(freqs / (a440 / 16))
[docs]def barkscale_fbanks(
n_freqs: int,
f_min: float,
f_max: float,
n_barks: int,
sample_rate: int,
bark_scale: str = "traunmuller",
) -> torch.Tensor:
r"""Create a frequency bin conversion matrix.
.. devices:: CPU
.. properties:: TorchScript
.. image:: https://download.pytorch.org/torchaudio/doc-assets/bark_fbanks.png
:alt: Visualization of generated filter bank
Args:
n_freqs (int): Number of frequencies to highlight/apply
f_min (float): Minimum frequency (Hz)
f_max (float): Maximum frequency (Hz)
n_barks (int): Number of mel filterbanks
sample_rate (int): Sample rate of the audio waveform
bark_scale (str, optional): Scale to use: ``traunmuller``,``schroeder`` or ``wang``. (Default: ``traunmuller``)
Returns:
torch.Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_barks``)
meaning number of frequencies to highlight/apply to x the number of filterbanks.
Each column is a filterbank so that assuming there is a matrix A of
size (..., ``n_freqs``), the applied result would be
``A * barkscale_fbanks(A.size(-1), ...)``.
"""
# freq bins
all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
# calculate bark freq bins
m_min = _hz_to_bark(f_min, bark_scale=bark_scale)
m_max = _hz_to_bark(f_max, bark_scale=bark_scale)
m_pts = torch.linspace(m_min, m_max, n_barks + 2)
f_pts = _bark_to_hz(m_pts, bark_scale=bark_scale)
# create filterbank
fb = _create_triangular_filterbank(all_freqs, f_pts)
if (fb.max(dim=0).values == 0.0).any():
warnings.warn(
"At least one bark filterbank has all zero values. "
f"The value for `n_barks` ({n_barks}) may be set too high. "
f"Or, the value for `n_freqs` ({n_freqs}) may be set too low."
)
return fb
[docs]def chroma_filterbank(
sample_rate: int,
n_freqs: int,
n_chroma: int,
*,
tuning: float = 0.0,
ctroct: float = 5.0,
octwidth: Optional[float] = 2.0,
norm: int = 2,
base_c: bool = True,
):
"""Create a frequency-to-chroma conversion matrix. Implementation adapted from librosa.
Args:
sample_rate (int): Sample rate.
n_freqs (int): Number of input frequencies.
n_chroma (int): Number of output chroma.
tuning (float, optional): Tuning deviation from A440 in fractions of a chroma bin. (Default: 0.0)
ctroct (float, optional): Center of Gaussian dominance window to weight filters by, in octaves. (Default: 5.0)
octwidth (float or None, optional): Width of Gaussian dominance window to weight filters by, in octaves.
If ``None``, then disable weighting altogether. (Default: 2.0)
norm (int, optional): order of norm to normalize filter bank by. (Default: 2)
base_c (bool, optional): If True, then start filter bank at C. Otherwise, start at A. (Default: True)
Returns:
torch.Tensor: Chroma filter bank, with shape `(n_freqs, n_chroma)`.
"""
# Skip redundant upper half of frequency range.
freqs = torch.linspace(0, sample_rate // 2, n_freqs)[1:]
freq_bins = n_chroma * _hz_to_octs(freqs, bins_per_octave=n_chroma, tuning=tuning)
freq_bins = torch.cat((torch.tensor([freq_bins[0] - 1.5 * n_chroma]), freq_bins))
freq_bin_widths = torch.cat(
(
torch.maximum(freq_bins[1:] - freq_bins[:-1], torch.tensor(1.0)),
torch.tensor([1]),
)
)
# (n_freqs, n_chroma)
D = freq_bins.unsqueeze(1) - torch.arange(0, n_chroma)
n_chroma2 = round(n_chroma / 2)
# Project to range [-n_chroma/2, n_chroma/2 - 1]
D = torch.remainder(D + n_chroma2, n_chroma) - n_chroma2
fb = torch.exp(-0.5 * (2 * D / torch.tile(freq_bin_widths.unsqueeze(1), (1, n_chroma))) ** 2)
fb = torch.nn.functional.normalize(fb, p=norm, dim=1)
if octwidth is not None:
fb *= torch.tile(
torch.exp(-0.5 * (((freq_bins.unsqueeze(1) / n_chroma - ctroct) / octwidth) ** 2)),
(1, n_chroma),
)
if base_c:
fb = torch.roll(fb, -3 * (n_chroma // 12), dims=1)
return fb