• Docs >
  • Torch Export to StableHLO
Shortcuts

Torch Export to StableHLO

This document describes how to use torch export + torch xla to export to StableHLO format.

from torch.export import export
from torch_xla.stablehlo import exported_program_to_stablehlo
import torch_xla.core.xla_model as xm
import torchvision
import torch

xla_device = xm.xla_device()

resnet18 = torchvision.models.resnet18()
# Sample input is a tuple
sample_input = (torch.randn(4, 3, 224, 224), )
output = resnet18(*sample_input)
exported = export(resnet18, sample_input)
stablehlo_program = exported_program_to_stablehlo(exported)

# Now stablehlo_program is a callable backed by stablehlo IR.

# we can see it's stablehlo code with
#   here 'forward' is the name of function. Currently we only support
#   one entry point per program, but in the future we will support
#   multiple entry points in a program.
print(stablehlo_program.get_stablehlo_text('forward'))

# we can also print out the bytecode
print(stablehlo_program.get_stablehlo_bytecode('forward'))

# we can also run the module, to run the stablehlo module, we need to move
# our tensors to XLA device.
sample_input_xla = tuple(s.to(xla_device) for s in sample_input)

output2 = stablehlo_program(*sample_input_xla)
print(torch.allclose(output, output2.cpu(), atol=1e-5))

Saving StableHLO bytecodes to disk

One can now save stablehlo to disk with

stablehlo_program.save('/tmp/stablehlo_dir')

The path should be path to an empty directory. If it doesn’t exist, it will be created. This directory can be loaded again as another stablehlo_program:

from torch_xla.stablehlo import StableHLOGraphModule
stablehlo_program2 = StableHLOGraphModule.load('/tmp/stablehlo_dir')
output3 = stablehlo_program2(*sample_input_xla)

Convert saved StableHLO for serving

StableHLO is an open format and it is supported for serving in tensorflow.serving model server. However, before giving it to tf.serving, we need to first wrap the generated StableHLO bytecode into a tf.saved_model format.

For that, first ensure that you have the latest tensorflow install in the current python env, if not, install with

pip install tf-nightly

Now, you can run a converter (provided in the torch/xla installation)

stablehlo-to-saved-model /tmp/stablehlo_dir /tmp/resnet_tf/1

After that, you can run your model server on the newly generated tf.saved_model with tf serving binary.

docker pull tensorflow/serving
docker run -p 8500:8500 \
--mount type=bind,source=/tmp/resnet_tf,target=/models/resnet_tf \
-e MODEL_NAME=resnet_tf -t tensorflow/serving &

You can also use the tf.serving binary directly without docker. For more details, please follow the tf serving guide.

Common wrappers

I want to save directly tf.saved_model format without needing to run an separate command.

You can accomplish this by using this helper function:

from torch_xla.tf_saved_model_integration import save_torch_module_as_tf_saved_model

save_torch_module_as_tf_saved_model(
    resnet18,  # original pytorch torch.nn.Module
    sample_inputs, # sample inputs used to trace
    '/tmp/resnet_tf'   # directory for tf.saved_model
)

Other common wrappers

def save_as_stablehlo(exported_model: 'ExportedProgram',
                      stablehlo_dir: os.PathLike,
                      options: Optional[StableHLOExportOptions] = None):

save_as_stablehlo (also aliased as torch_xla.save_as_stablehlo) takes ExportedProgram and saves StableHLO on disk. i.e. same as exported_program_to_stablehlo(…).save(…)

def save_torch_model_as_stablehlo(
    torchmodel: torch.nn.Module,
    args: Tuple[Any],
    path: os.PathLike,
    options: Optional[StableHLOExportOptions] = None) -> None:
    """Convert a torch model to a callable backed by StableHLO.

takes torch.nn.Module and saves StableHLO on disk. i.e. same as torch.export.export followed by save_as_stablehlo

Files produced by save_as_stablehlo.

Inside of /tmp/stablehlo_dir in the example above, you will find 3 directories: data, constants, functions. Both data and constants will consist of tensors used by the program saved as numpy.ndarray using numpy.save.

The functions directory will contain StableHLO bytecode, here named forward.bytecode, human readable StableHLO code (MLIR form) forward.mlir, and a JSON file specifying which weights and original user’s input become the which positional arguments of this StableHLO function; as well as the dtypes and shapes of every argument.

Example:

$ find /tmp/stablehlo_dir
./functions
./functions/forward.mlir
./functions/forward.bytecode
./functions/forward.meta
./constants
./constants/3
./constants/1
./constants/0
./constants/2
./data
./data/L__fn___layers_15_feed_forward_w2.weight
./data/L__fn___layers_13_feed_forward_w1.weight
./data/L__fn___layers_3_attention_wo.weight
./data/L__fn___layers_12_ffn_norm_weight
./data/L__fn___layers_25_attention_wo.weight
...

The JSON file is serialized form of the torch_xla.stablehlo.StableHLOFunc class.

This format is currently also in prototype stage and there are no backward compatibility guarantees. The future plan is to standardize a format that the major frameworks (PyTorch, JAX, TensorFlow) can agree.

Preserving High-Level PyTorch Operations in StableHLO by generating stablehlo.composite

High level PyTorch ops (e.g. F.scaled_dot_product_attention) will be decomposed into low level ops during PyTorch -> StableHLO lowering. Capturing the high level op in downstream ML compilers can be crucial for genearting a performant, efficient specialized kernels. While pattern matching a bunch of low level ops in the ML compiler can be challenging and error-prone, we offer a more robust method to outline the high-level PyTorch op in StableHLO program - by generating stablehlo.composite for the high level PyTorch ops.

With StableHLOCompositeBuilder, user can outline an arbitary region within the forward function of a torch.nn.Module. Then in the exported StableHLO program, a composite op for the outlined region will be produced.

NOTE: Because the value of non-tensor inputs to the outlined region will be hardcoded in the exported graph, please store those values as composite attributes, if retrieving from the downstream compiler is desired.

The following example shows a pratical use case - capturing scaled_product_attention

import torch
import torch.nn.functional as F
from torch_xla import stablehlo
from torch_xla.experimental.mark_pattern_utils import StableHLOCompositeBuilder


class M(torch.nn.Module):

    def __init__(self):
        super().__init__()
        self.q_proj = torch.nn.Linear(128, 128, bias=False)
        self.k_proj = torch.nn.Linear(128, 128, bias=False)
        self.v_proj = torch.nn.Linear(128, 128, bias=False)
        # Initialize the StableHLOCompositeBuilder with the name of the composite op and its attributes
        # Note: To capture the value of non-tensor inputs, please pass them as attributes to the builder
        self.b = StableHLOCompositeBuilder("test.sdpa", {"scale": 0.25, "other_attr": "val"})

    def forward(self, x):
        q = self.q_proj(x)
        k = self.k_proj(x)
        v = self.v_proj(x)
        q, k, v = self.b.mark_inputs(q, k, v)
        attn_out = F.scaled_dot_product_attention(q, k, v, scale=0.25)
        attn_out = self.b.mark_outputs(attn_out)
        attn_out = attn_out + x
        return attn_out

input_args = (torch.randn((10, 8, 128)), )
# torch.export to Exported Program
exported = torch.export.export(M(), input_args)
# Exported Program to StableHLO
stablehlo_gm = stablehlo.exported_program_to_stablehlo(exported)
stablehlo = stablehlo_gm.get_stablehlo_text()
print(stablehlo)

The main StableHLO graph is shown below:

module @IrToHlo.56 attributes {mhlo.cross_program_prefetches = [], mhlo.input_output_alias = [], mhlo.is_dynamic = false, mhlo.use_auto_spmd_partitioning = false} {
  func.func @main(%arg0: tensor<10x8x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>, %arg3: tensor<128x128xf32>) -> tensor<10x8x128xf32> {
    ...
    %10 = stablehlo.composite "test.sdpa" %3, %6, %9 {composite_attributes = {other_attr = "val", scale = 2.500000e-01 : f32}, decomposition = @test.sdpa.impl} : (tensor<10x8x128xf32>, tensor<10x8x128xf32>, tensor<10x8x128xf32>) -> tensor<10x8x128xf32>
    %11 = stablehlo.add %10, %arg0 : tensor<10x8x128xf32>
    return %11 : tensor<10x8x128xf32>
  }

  func.func private @test.sdpa.impl(%arg0: tensor<10x8x128xf32>, %arg1: tensor<10x8x128xf32>, %arg2: tensor<10x8x128xf32>) -> tensor<10x8x128xf32> {
    // Actual implementation of the composite
    ...
    return %11 : tensor<10x8x128xf32>
  }

The sdpa operation is encapsulated as a stablehlo composite call within the main graph. The name and attributes specified in the torch.nn.Module are propagated.

%10 = stablehlo.composite "test.sdpa" %3, %6, %9 {composite_attributes = {other_attr = "val", scale = 2.500000e-01 : f32}, decomposition = @test.sdpa.impl}

The reference PyTorch decomposition of the sdpa operation is captured in a StableHLO function:

func.func private @test.sdpa.impl(%arg0: tensor<10x8x128xf32>, %arg1: tensor<10x8x128xf32>, %arg2: tensor<10x8x128xf32>) -> tensor<10x8x128xf32> {
    // Actual implementation of the composite
    ...
    return %11 : tensor<10x8x128xf32>
  }

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources