Source code for torchaudio.datasets.yesno
import os
from pathlib import Path
from typing import List, Tuple, Union
import torchaudio
from torch import Tensor
from torch.hub import download_url_to_file
from torch.utils.data import Dataset
from torchaudio.datasets.utils import _extract_tar
_RELEASE_CONFIGS = {
"release1": {
"folder_in_archive": "waves_yesno",
"url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz",
"checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73",
}
}
[docs]class YESNO(Dataset):
"""*YesNo* :cite:`YesNo` dataset.
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
url (str, optional): The URL to download the dataset from.
(default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``)
folder_in_archive (str, optional):
The top-level directory of the dataset. (default: ``"waves_yesno"``)
download (bool, optional):
Whether to download the dataset if it is not found at root path. (default: ``False``).
"""
def __init__(
self,
root: Union[str, Path],
url: str = _RELEASE_CONFIGS["release1"]["url"],
folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"],
download: bool = False,
) -> None:
self._parse_filesystem(root, url, folder_in_archive, download)
def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None:
root = Path(root)
archive = os.path.basename(url)
archive = root / archive
self._path = root / folder_in_archive
if download:
if not os.path.isdir(self._path):
if not os.path.isfile(archive):
checksum = _RELEASE_CONFIGS["release1"]["checksum"]
download_url_to_file(url, archive, hash_prefix=checksum)
_extract_tar(archive)
if not os.path.isdir(self._path):
raise RuntimeError("Dataset not found. Please use `download=True` to download it.")
self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav"))
def _load_item(self, fileid: str, path: str):
labels = [int(c) for c in fileid.split("_")]
file_audio = os.path.join(path, fileid + ".wav")
waveform, sample_rate = torchaudio.load(file_audio)
return waveform, sample_rate, labels
[docs] def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
Tensor:
Waveform
int:
Sample rate
List[int]:
labels
"""
fileid = self._walker[n]
item = self._load_item(fileid, self._path)
return item
def __len__(self) -> int:
return len(self._walker)