• Docs >
  • Audio Feature Augmentation
Shortcuts

Audio Feature Augmentation

Author: Moto Hira

# When running this tutorial in Google Colab, install the required packages
# with the following.
# !pip install torchaudio librosa

import torch
import torchaudio
import torchaudio.transforms as T

print(torch.__version__)
print(torchaudio.__version__)
2.0.0
2.0.1

Preparing data and utility functions (skip this section)

# @title Prepare data and utility functions. {display-mode: "form"}
# @markdown
# @markdown You do not need to look into this cell.
# @markdown Just execute once and you are good to go.
# @markdown
# @markdown In this tutorial, we will use a speech data from [VOiCES dataset](https://iqtlabs.github.io/voices/),
# @markdown which is licensed under Creative Commos BY 4.0.

# -------------------------------------------------------------------------------
# Preparation of data and helper functions.
# -------------------------------------------------------------------------------
import librosa
import matplotlib.pyplot as plt
from torchaudio.utils import download_asset

SAMPLE_WAV_SPEECH_PATH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")


def _get_sample(path, resample=None):
    effects = [["remix", "1"]]
    if resample:
        effects.extend(
            [
                ["lowpass", f"{resample // 2}"],
                ["rate", f"{resample}"],
            ]
        )
    return torchaudio.sox_effects.apply_effects_file(path, effects=effects)


def get_speech_sample(*, resample=None):
    return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample)


def get_spectrogram(
    n_fft=400,
    win_len=None,
    hop_len=None,
    power=2.0,
):
    waveform, _ = get_speech_sample()
    spectrogram = T.Spectrogram(
        n_fft=n_fft,
        win_length=win_len,
        hop_length=hop_len,
        center=True,
        pad_mode="reflect",
        power=power,
    )
    return spectrogram(waveform)


def plot_spectrogram(spec, title=None, ylabel="freq_bin", aspect="auto", xmax=None):
    fig, axs = plt.subplots(1, 1)
    axs.set_title(title or "Spectrogram (db)")
    axs.set_ylabel(ylabel)
    axs.set_xlabel("frame")
    im = axs.imshow(librosa.power_to_db(spec), origin="lower", aspect=aspect)
    if xmax:
        axs.set_xlim((0, xmax))
    fig.colorbar(im, ax=axs)
    plt.show(block=False)

SpecAugment

SpecAugment is a popular spectrogram augmentation technique.

torchaudio implements torchaudio.transforms.TimeStretch(), torchaudio.transforms.TimeMasking() and torchaudio.transforms.FrequencyMasking().

TimeStretch

spec = get_spectrogram(power=None)
stretch = T.TimeStretch()

rate = 1.2
spec_ = stretch(spec, rate)
plot_spectrogram(torch.abs(spec_[0]), title=f"Stretched x{rate}", aspect="equal", xmax=304)

plot_spectrogram(torch.abs(spec[0]), title="Original", aspect="equal", xmax=304)

rate = 0.9
spec_ = stretch(spec, rate)
plot_spectrogram(torch.abs(spec_[0]), title=f"Stretched x{rate}", aspect="equal", xmax=304)
  • Stretched x1.2
  • Original
  • Stretched x0.9

TimeMasking

torch.random.manual_seed(4)

spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")

masking = T.TimeMasking(time_mask_param=80)
spec = masking(spec)

plot_spectrogram(spec[0], title="Masked along time axis")
  • Original
  • Masked along time axis

FrequencyMasking

torch.random.manual_seed(4)

spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")

masking = T.FrequencyMasking(freq_mask_param=80)
spec = masking(spec)

plot_spectrogram(spec[0], title="Masked along frequency axis")
  • Original
  • Masked along frequency axis

Total running time of the script: ( 0 minutes 3.697 seconds)

Gallery generated by Sphinx-Gallery

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources