Source code for torchaudio.datasets.quesst14
import os
import re
from pathlib import Path
from typing import Optional, Tuple, Union
import torch
from torch.hub import download_url_to_file
from torch.utils.data import Dataset
from torchaudio.datasets.utils import _extract_tar, _load_waveform
URL = "https://speech.fit.vutbr.cz/files/quesst14Database.tgz"
SAMPLE_RATE = 8000
_CHECKSUM = "4f869e06bc066bbe9c5dde31dbd3909a0870d70291110ebbb38878dcbc2fc5e4"
_LANGUAGES = [
"albanian",
"basque",
"czech",
"nnenglish",
"romanian",
"slovak",
]
[docs]class QUESST14(Dataset):
"""*QUESST14* :cite:`Mir2015QUESST2014EQ` dataset.
Args:
root (str or Path): Root directory where the dataset's top level directory is found
subset (str): Subset of the dataset to use. Options: [``"docs"``, ``"dev"``, ``"eval"``].
language (str or None, optional): Language to get dataset for.
Options: [``None``, ``albanian``, ``basque``, ``czech``, ``nnenglish``, ``romanian``, ``slovak``].
If ``None``, dataset consists of all languages. (default: ``"nnenglish"``)
download (bool, optional): Whether to download the dataset if it is not found at root path.
(default: ``False``)
"""
def __init__(
self,
root: Union[str, Path],
subset: str,
language: Optional[str] = "nnenglish",
download: bool = False,
) -> None:
if subset not in ["docs", "dev", "eval"]:
raise ValueError("`subset` must be one of ['docs', 'dev', 'eval']")
if language is not None and language not in _LANGUAGES:
raise ValueError(f"`language` must be None or one of {str(_LANGUAGES)}")
# Get string representation of 'root'
root = os.fspath(root)
basename = os.path.basename(URL)
archive = os.path.join(root, basename)
basename = basename.rsplit(".", 2)[0]
self._path = os.path.join(root, basename)
if not os.path.isdir(self._path):
if not os.path.isfile(archive):
if not download:
raise RuntimeError("Dataset not found. Please use `download=True` to download")
download_url_to_file(URL, archive, hash_prefix=_CHECKSUM)
_extract_tar(archive, root)
if subset == "docs":
self.data = filter_audio_paths(self._path, language, "language_key_utterances.lst")
elif subset == "dev":
self.data = filter_audio_paths(self._path, language, "language_key_dev.lst")
elif subset == "eval":
self.data = filter_audio_paths(self._path, language, "language_key_eval.lst")
[docs] def get_metadata(self, n: int) -> Tuple[str, int, str]:
"""Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform,
but otherwise returns the same fields as :py:func:`__getitem__`.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
str:
Path to audio
int:
Sample rate
str:
File name
"""
audio_path = self.data[n]
relpath = os.path.relpath(audio_path, self._path)
return relpath, SAMPLE_RATE, audio_path.with_suffix("").name
[docs] def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
Tensor:
Waveform
int:
Sample rate
str:
File name
"""
metadata = self.get_metadata(n)
waveform = _load_waveform(self._path, metadata[0], metadata[1])
return (waveform,) + metadata[1:]
def __len__(self) -> int:
return len(self.data)
def filter_audio_paths(
path: str,
language: str,
lst_name: str,
):
"""Extract audio paths for the given language."""
audio_paths = []
path = Path(path)
with open(path / "scoring" / lst_name) as f:
for line in f:
audio_path, lang = line.strip().split()
if language is not None and lang != language:
continue
audio_path = re.sub(r"^.*?\/", "", audio_path)
audio_paths.append(path / audio_path)
return audio_paths