Tiny ImageNet Model

This is a toy model for doing regression on the tiny imagenet dataset. It’s used by the apps in the same folder.

import os.path
import subprocess
from typing import List, Optional, Tuple

import fsspec
import pytorch_lightning as pl
import torch
import torch.jit
from torch.nn import functional as F
from torchmetrics import Accuracy
from torchvision.models.resnet import BasicBlock, ResNet

class TinyImageNetModel(pl.LightningModule):
    An very simple linear model for the tiny image net dataset.

    def __init__(
        self, layer_sizes: Optional[List[int]] = None, lr: Optional[float] = None
    ) -> None:

        if not layer_sizes:
            layer_sizes = [1, 1, 1, 1] float = lr or 0.001

        # We use the torchvision resnet model with some small tweaks to match
        # TinyImageNet.
        m = ResNet(BasicBlock, layer_sizes)
        m.avgpool = torch.nn.AdaptiveAvgPool2d(1)
        m.fc.out_features = 200
        self.model: ResNet = m

        self.train_acc = Accuracy()
        self.val_acc = Accuracy()

    # pyre-fixme[14]
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.model(x)

    # pyre-fixme[14]
    def training_step(
        self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
    ) -> torch.Tensor:
        return self._step("train", self.train_acc, batch, batch_idx)

    # pyre-fixme[14]
    def validation_step(
        self, val_batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
    ) -> torch.Tensor:
        return self._step("val", self.val_acc, val_batch, batch_idx)

    def _step(
        step_name: str,
        acc_metric: Accuracy,
        batch: Tuple[torch.Tensor, torch.Tensor],
        batch_idx: int,
    ) -> torch.Tensor:
        x, y = batch
        y_pred = self(x)
        loss = F.cross_entropy(y_pred, y)
        self.log(f"{step_name}_loss", loss)
        acc_metric(y_pred, y)
        self.log(f"{step_name}_acc", acc_metric.compute())
        return loss

    # pyre-fixme[3]: TODO(aivanou): Figure out why oss pyre can identify type but fb cannot.
    def configure_optimizers(self):
        return torch.optim.AdamW(self.parameters(),

def export_inference_model(
    model: TinyImageNetModel, out_path: str, tmpdir: str
) -> None:
    export_inference_model uses TorchScript JIT to serialize the
    TinyImageNetModel into a standalone file that can be used during inference.
    TorchServe can also handle interpreted models with just the file if
    your model can't be JITed.

    print("exporting inference model")
    jit_path = os.path.join(tmpdir, "")
    jitted = torch.jit.script(model)
    print(f"saving JIT model to {jit_path}"), jit_path)

    model_name = "tiny_image_net"

    mar_path = os.path.join(tmpdir, f"{model_name}.mar")
    print(f"creating model archive at {mar_path}")

    remote_path = os.path.join(out_path, "model.mar")
    print(f"uploading to {remote_path}")
    fs, _, rpaths = fsspec.get_fs_token_paths(remote_path)
    assert len(rpaths) == 1, "must have single path"
    fs.put(mar_path, rpaths[0])

# sphinx_gallery_thumbnail_path = '_static/img/gallery-lib.png'

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources