Source code for torchtune.datasets.multimodal._the_cauldron
# Copyright (c) Meta Platforms, Inc. and affiliates.# All rights reserved.## This source code is licensed under the BSD-style license found in the# LICENSE file in the root directory of this source tree.fromtypingimportAny,Callable,Dict,Mapping,Optionalfromtorchtune.data._messagesimportMessagefromtorchtune.datasets._sftimportSFTDataset,SFTTransformfromtorchtune.modules.transformsimportTransformclassTheCauldronToMessages(Transform):""" Construct messages from a sample formatted similarly to `The Cauldron dataset <https://huggingface.co/datasets/HuggingFaceM4/the_cauldron>`_. Image placeholders are prepended to the text in the ``Message`` content. Images in the dataset are expected to be a list of a single PIL image, so they are simply passed through to the model transform with an optional column remapping if ``column_map`` is specified. For example, a dataset row:: { "texts": [ { "user": "What are in these images.", "assistant": "They are images of dogs.", }, ... ], "images": [ [PIL.Image.Image, PIL.Image.Image], ], } will be converted to:: [ Message( role = "user", content = [ {"type": "image", "content": <PIL.Image.Image>}, {"type": "image", "content": <PIL.Image.Image>}, {"type": "text", "content": "What are in these images."}, ], ), Message( role = "assistant", content = [ {"type": "text", "content": "They are images of dogs."}, ], ), ... ] Args: column_map (Optional[Dict[str, str]]): a mapping to change the expected "texts" and "image" column names to the actual column names in the dataset. Default is None, keeping the default column names. new_system_prompt (Optional[str]): if specified, prepend a system message. This can serve as instructions to guide the model response. Default is None. Raises: ValueError: If ``column_map`` is provided and ``texts`` not in ``column_map``. """def__init__(self,column_map:Optional[Dict[str,str]]=None,new_system_prompt:Optional[str]=None,):self.new_system_prompt=new_system_promptifcolumn_mapisnotNone:if"images"notincolumn_map:raiseValueError("column_map must map 'images' to your expected column name if specified")if"texts"notincolumn_map:raiseValueError("column_map must map 'texts' to your expected column name if specified")self._column_map=column_mapelse:self._column_map={"texts":"texts","images":"images"}def__call__(self,sample:Mapping[str,Any])->Mapping[str,Any]:# Dataset images to be prepended to the first user messageimg_content=[]forimginsample[self._column_map["images"]]:img_content.append({"type":"image","content":img})# Convert to messagesmessages=[]fori,messageinenumerate(sample[self._column_map["texts"]]):user_content=[{"type":"text","content":message["user"]}]ifi==0:user_content=img_content+user_contentmessages.append(Message(role="user",content=user_content,masked=True,))messages.append(Message(role="assistant",content=[{"type":"text","content":message["assistant"]}],))ifself.new_system_promptisnotNone:messages=[Message(role="system",content=self.new_system_prompt,masked=True,eot=True)]+messagesreturn{"messages":messages}
[docs]defthe_cauldron_dataset(model_transform:Transform,*,subset:str="orcvqa",source:str="HuggingFaceM4/the_cauldron",column_map:Optional[Dict[str,str]]=None,new_system_prompt:Optional[str]=None,packed:bool=False,filter_fn:Optional[Callable]=None,split:str="train",**load_dataset_kwargs:Dict[str,Any],)->SFTDataset:""" Support for family of image + text datasets similar to `The Cauldron <https://huggingface.co/datasets/HuggingFaceM4/the_cauldron>`_ from Hugging Face Datasets. The Cauldron consists of numerous datasets. You can specify one of the datasets using the ``subset`` argument. The default value is the ``orcvqa`` dataset. The model transform is expected to be a callable that applies pre-processing steps specific to a model. For multimodal datasets, this is expected to be at minimum a tokenizer and an image transform. The tokenizer will convert text sequences into token IDs after the dataset is converted to a list of :class:`~torchtune.data.Message`. The image transform will load the image and process it in accordance to the model's requirements. Here is a minimal example for illustrative purposes: .. code-block:: python from torchtune.models.llama3 import llama3_tokenizer from torchtune.models.clip import CLIPImageTransform from torchtune.modules.transforms import Transform class MyModelTransform(Transform): def __init__( self, tokenizer_path: str, max_seq_len: Optional[int] = None, ): self.tokenizer = llama3_tokenizer(tokenizer_path) self.image_transform = CLIPImageTransform() def __call__(self, sample: Mapping[str, Any]) -> Mapping[str, Any]: tokens, mask = self.tokenizer.tokenize_messages(sample["messages"]) images = self.image_transform(sample["images"]) return { "tokens": tokens, "mask": mask, "images": images, } See :class:`~torchtune.datasets.SFTDataset` for more details about model transforms and message transforms. Args: model_transform (Transform): model-specific transform class that takes in a sample dict and applies custom transforms on the keys. It should consist of at minimum two components: text tokenization (called on the "messages" field) and image transform (called on the "images" field). The keys returned by the model transform should be aligned with the expected inputs into the model. subset (str): name of the subset of the dataset to load. Default is `orcvqa`, see the `dataset card <https://huggingface.co/datasets/HuggingFaceM4/the_cauldron>`_ for other options. source (str): path to dataset repository on Hugging Face. For local datasets, define source as the data file type (e.g. "json", "csv", "text") and pass in the filepath in ``data_files``. See `Hugging Face's <https://huggingface.co/docs/datasets/en/package_reference/loading_methods#datasets.load_dataset.path>`_ ``load_dataset`` for more details. Default is ``HuggingFaceM4/the_cauldron``. column_map (Optional[Dict[str, str]]): a mapping to change the expected "images" and "texts" column names to the actual column names in the dataset. Default is None, keeping the default column names. new_system_prompt (Optional[str]): if specified, prepend a system message. This can serve as instructions to guide the model response. Setting this will OVERRIDE any system messages already present in the dataset. Default is None. packed (bool): Whether or not to pack the dataset to ``max_seq_len`` prior to training. Default is False. filter_fn (Optional[Callable]): callable used to filter the dataset prior to any pre-processing. See the Hugging Face `docs <https://huggingface.co/docs/datasets/v2.20.0/process#select-and-filter>`_ for more details. split (str): ``split`` argument for ``datasets.load_dataset``. You can use this argument to load a subset of a given split, e.g. ``split="train[:10%]"``. Default is "train". **load_dataset_kwargs (Dict[str, Any]): additional keyword arguments to pass to ``load_dataset``. See Hugging Face's `API ref <https://huggingface.co/docs/datasets/en/package_reference/loading_methods#datasets.load_dataset>`_ for more details. Returns: SFTDataset: dataset configured with source data and transform Raises: ValueError: If ``packed`` is True, they are not supported for multimodal datasets yet. Example: >>> cauldron_ds = the_cauldron_dataset(model_transform=model_transform, subset="ai2d") >>> for batch in Dataloader(cauldron_ds, batch_size=8): >>> print(f"Batch size: {len(batch)}") >>> Batch size: 8 """ifpacked:raiseValueError("Multimodal datasets don't support packing yet.")message_transform=TheCauldronToMessages(column_map=column_map,new_system_prompt=new_system_prompt,)ds=SFTDataset(model_transform=model_transform,source=source,message_transform=message_transform,name=subset,filter_fn=filter_fn,split=split,**load_dataset_kwargs,)returnds
defthe_cauldron_transform(model_transform:Optional[Transform]=None,texts_col:str="texts",images_col:str="images",new_system_prompt:Optional[str]=None,)->SFTTransform:""" Support for family of image + text datasets similar to `The Cauldron <https://huggingface.co/datasets/HuggingFaceM4/the_cauldron>`_ from Hugging Face Datasets. This function instantiates a :class:`~torchtune.datasets.SFTTransform` only (not the dataset). See :func:`~torchtune.datasets.the_cauldron_dataset` for more details. The model transform is expected to be a callable that applies pre-processing steps specific to a model. For multimodal datasets, this is expected to be at minimum a tokenizer and an image transform. The tokenizer will convert text sequences into token IDs after the dataset is converted to a list of :class:`~torchtune.data.Message`. The image transform will load the image and process it in accordance to the model's requirements. Args: model_transform (Optional[Transform]): model-specific transform class that takes in a sample dict and applies custom transforms on the keys. It should consist of at minimum two components: text tokenization (called on the "messages" field) and image transform (called on the "images" field). The keys returned by the model transform should be aligned with the expected inputs into the model. Default is None. texts_col (str): name of the column containing the text data. Default is "texts". images_col (str): name of the column containing the image data. Default is "images". new_system_prompt (Optional[str]): if specified, prepend a system message. This can serve as instructions to guide the model response. Setting this will OVERRIDE any system messages already present in the dataset. Default is None. Returns: :class:`~torchtune.datasets.SFTTransform` - Callable that transforms samples into The Cauldron format. """column_map={"texts":texts_col,"images":images_col}returnSFTTransform(message_transform=TheCauldronToMessages(column_map=column_map,new_system_prompt=new_system_prompt,),model_transform=model_transform,)
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.