Shortcuts

FrameSkipTransform

class torchrl.envs.transforms.FrameSkipTransform(frame_skip: int = 1)[source]

A frame-skip transform.

This transform applies the same action repeatedly in the parent environment, which improves stability on certain training sota-implementations.

Parameters:

frame_skip (int, optional) – a positive integer representing the number of frames during which the same action must be applied.

forward(tensordict)[source]

Reads the input tensordict, and for the selected keys, applies the transform.

By default, this method:

  • calls directly _apply_transform().

  • does not call _step() or _call().

This method is not called within env.step at any point. However, is is called within sample().

Note

forward also works with regular keyword arguments using dispatch to cast the args names to the keys.

Examples

>>> class TransformThatMeasuresBytes(Transform):
...     '''Measures the number of bytes in the tensordict, and writes it under `"bytes"`.'''
...     def __init__(self):
...         super().__init__(in_keys=[], out_keys=["bytes"])
...
...     def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
...         bytes_in_td = tensordict.bytes()
...         tensordict["bytes"] = bytes
...         return tensordict
>>> t = TransformThatMeasuresBytes()
>>> env = env.append_transform(t) # works within envs
>>> t(TensorDict(a=0))  # Works offline too.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources