# Source code for torch.nn.modules.loss

```
import warnings
from .module import Module
from .. import functional as F
from .. import _reduction as _Reduction
from ..._jit_internal import weak_module, weak_script_method
class _Loss(Module):
def __init__(self, size_average=None, reduce=None, reduction='mean'):
super(_Loss, self).__init__()
if size_average is not None or reduce is not None:
self.reduction = _Reduction.legacy_get_string(size_average, reduce)
else:
self.reduction = reduction
class _WeightedLoss(_Loss):
def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean'):
super(_WeightedLoss, self).__init__(size_average, reduce, reduction)
self.register_buffer('weight', weight)
[docs]@weak_module
class L1Loss(_Loss):
r"""Creates a criterion that measures the mean absolute error (MAE) between each element in
the input :math:`x` and target :math:`y`.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left| x_n - y_n \right|,
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then
:math:`(N, *)`, same shape as the input
Examples::
>>> loss = nn.L1Loss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction='mean'):
super(L1Loss, self).__init__(size_average, reduce, reduction)
@weak_script_method
def forward(self, input, target):
return F.l1_loss(input, target, reduction=self.reduction)
[docs]@weak_module
class NLLLoss(_WeightedLoss):
r"""The negative log likelihood loss. It is useful to train a classification
problem with `C` classes.
If provided, the optional argument :attr:`weight` should be a 1D Tensor assigning
weight to each of the classes. This is particularly useful when you have an
unbalanced training set.
The `input` given through a forward call is expected to contain
log-probabilities of each class. `input` has to be a Tensor of size either
:math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)`
with :math:`K \geq 1` for the `K`-dimensional case (described later).
Obtaining log-probabilities in a neural network is easily achieved by
adding a `LogSoftmax` layer in the last layer of your network.
You may use `CrossEntropyLoss` instead, if you prefer not to add an extra
layer.
The `target` that this loss expects should be a class index in the range :math:`[0, C-1]`
where `C = number of classes`; if `ignore_index` is specified, this loss also accepts
this class index (this index may not necessarily be in the class range).
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_{y_n} x_{n,y_n}, \quad
w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\},
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
\text{if reduction} = \text{'mean';}\\
\sum_{n=1}^N l_n, &
\text{if reduction} = \text{'sum'.}
\end{cases}
Can also be used for higher dimension inputs, such as 2D images, by providing
an input of size :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`,
where :math:`K` is the number of dimensions, and a target of appropriate shape
(see below). In the case of images, it computes NLL loss per-pixel.
Args:
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When
:attr:`size_average` is ``True``, the loss is averaged over
non-ignored targets.
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, C)` where `C = number of classes`, or
:math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
in the case of `K`-dimensional loss.
- Target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of
K-dimensional loss.
- Output: scalar.
If :attr:`reduction` is ``'none'``, then the same size as the target: :math:`(N)`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case
of K-dimensional loss.
Examples::
>>> m = nn.LogSoftmax(dim=1)
>>> loss = nn.NLLLoss()
>>> # input is of size N x C = 3 x 5
>>> input = torch.randn(3, 5, requires_grad=True)
>>> # each element in target has to have 0 <= value < C
>>> target = torch.tensor([1, 0, 4])
>>> output = loss(m(input), target)
>>> output.backward()
>>>
>>>
>>> # 2D loss example (used, for example, with image inputs)
>>> N, C = 5, 4
>>> loss = nn.NLLLoss()
>>> # input is of size N x C x height x width
>>> data = torch.randn(N, 16, 10, 10)
>>> conv = nn.Conv2d(16, C, (3, 3))
>>> m = nn.LogSoftmax(dim=1)
>>> # each element in target has to have 0 <= value < C
>>> target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C)
>>> output = loss(m(conv(data)), target)
>>> output.backward()
"""
__constants__ = ['ignore_index', 'weight', 'reduction']
def __init__(self, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction='mean'):
super(NLLLoss, self).__init__(weight, size_average, reduce, reduction)
self.ignore_index = ignore_index
@weak_script_method
def forward(self, input, target):
return F.nll_loss(input, target, weight=self.weight, ignore_index=self.ignore_index, reduction=self.reduction)
@weak_module
class NLLLoss2d(NLLLoss):
def __init__(self, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction='mean'):
warnings.warn("NLLLoss2d has been deprecated. "
"Please use NLLLoss instead as a drop-in replacement and see "
"https://pytorch.org/docs/master/nn.html#torch.nn.NLLLoss for more details.")
super(NLLLoss2d, self).__init__(weight, size_average, ignore_index, reduce, reduction)
[docs]@weak_module
class PoissonNLLLoss(_Loss):
r"""Negative log likelihood loss with Poisson distribution of target.
The loss can be described as:
.. math::
\text{target} \sim \mathrm{Poisson}(\text{input})
\text{loss}(\text{input}, \text{target}) = \text{input} - \text{target} * \log(\text{input})
+ \log(\text{target!})
The last term can be omitted or approximated with Stirling formula. The
approximation is used for target values more than 1. For targets less or
equal to 1 zeros are added to the loss.
Args:
log_input (bool, optional): if ``True`` the loss is computed as
:math:`\exp(\text{input}) - \text{target}*\text{input}`, if ``False`` the loss is
:math:`\text{input} - \text{target}*\log(\text{input}+\text{eps})`.
full (bool, optional): whether to compute full loss, i. e. to add the
Stirling approximation term
.. math::
\text{target}*\log(\text{target}) - \text{target} + 0.5 * \log(2\pi\text{target}).
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when
:attr:`log_input = False`. Default: 1e-8
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Examples::
>>> loss = nn.PoissonNLLLoss()
>>> log_input = torch.randn(5, 2, requires_grad=True)
>>> target = torch.randn(5, 2)
>>> output = loss(log_input, target)
>>> output.backward()
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar by default. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`,
the same shape as the input
"""
__constants__ = ['log_input', 'full', 'eps', 'reduction']
def __init__(self, log_input=True, full=False, size_average=None,
eps=1e-8, reduce=None, reduction='mean'):
super(PoissonNLLLoss, self).__init__(size_average, reduce, reduction)
self.log_input = log_input
self.full = full
self.eps = eps
@weak_script_method
def forward(self, log_input, target):
return F.poisson_nll_loss(log_input, target, log_input=self.log_input, full=self.full,
eps=self.eps, reduction=self.reduction)
[docs]@weak_module
class KLDivLoss(_Loss):
r"""The `Kullback-Leibler divergence`_ Loss
KL divergence is a useful distance measure for continuous distributions
and is often useful when performing direct regression over the space of
(discretely sampled) continuous output distributions.
As with :class:`~torch.nn.NLLLoss`, the `input` given is expected to contain
*log-probabilities* and is not restricted to a 2D Tensor.
The targets are given as *probabilities* (i.e. without taking the logarithm).
This criterion expects a `target` `Tensor` of the same size as the
`input` `Tensor`.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
l(x,y) = L = \{ l_1,\dots,l_N \}, \quad
l_n = y_n \cdot \left( \log y_n - x_n \right)
where the index :math:`N` spans all dimensions of ``input`` and :math:`L` has the same
shape as ``input``. If :attr:`reduction` is not ``'none'`` (default ``'mean'``), then:
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';} \\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
In default :attr:`reduction` mode ``'mean'``, the losses are averaged for each minibatch over observations
**as well as** over dimensions. ``'batchmean'`` mode gives the correct KL divergence where losses
are averaged over batch dimension only. ``'mean'`` mode's behavior will be changed to the same as
``'batchmean'`` in the next major release.
.. _Kullback-Leibler divergence:
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``.
``'none'``: no reduction will be applied.
``'batchmean'``: the sum of the output will be divided by batchsize.
``'sum'``: the output will be summed.
``'mean'``: the output will be divided by the number of elements in the output.
Default: ``'mean'``
.. note::
:attr:`size_average` and :attr:`reduce` are in the process of being deprecated,
and in the meantime, specifying either of those two args will override :attr:`reduction`.
.. note::
:attr:`reduction` = ``'mean'`` doesn't return the true kl divergence value, please use
:attr:`reduction` = ``'batchmean'`` which aligns with KL math definition.
In the next major release, ``'mean'`` will be changed to be the same as ``'batchmean'``.
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar by default. If :attr:``reduction`` is ``'none'``, then :math:`(N, *)`,
the same shape as the input
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction='mean'):
super(KLDivLoss, self).__init__(size_average, reduce, reduction)
@weak_script_method
def forward(self, input, target):
return F.kl_div(input, target, reduction=self.reduction)
[docs]@weak_module
class MSELoss(_Loss):
r"""Creates a criterion that measures the mean squared error (squared L2 norm) between
each element in the input :math:`x` and target :math:`y`.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left( x_n - y_n \right)^2,
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
Examples::
>>> loss = nn.MSELoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction='mean'):
super(MSELoss, self).__init__(size_average, reduce, reduction)
@weak_script_method
def forward(self, input, target):
return F.mse_loss(input, target, reduction=self.reduction)
[docs]@weak_module
class BCELoss(_WeightedLoss):
r"""Creates a criterion that measures the Binary Cross Entropy
between the target and the output:
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right],
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
This is used for measuring the error of a reconstruction in for example
an auto-encoder. Note that the targets :math:`y` should be numbers
between 0 and 1.
Args:
weight (Tensor, optional): a manual rescaling weight given to the loss
of each batch element. If given, has to be a Tensor of size `nbatch`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same
shape as input.
Examples::
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()
"""
__constants__ = ['reduction', 'weight']
def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean'):
super(BCELoss, self).__init__(weight, size_average, reduce, reduction)
@weak_script_method
def forward(self, input, target):
return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction)
[docs]@weak_module
class BCEWithLogitsLoss(_Loss):
r"""This loss combines a `Sigmoid` layer and the `BCELoss` in one single
class. This version is more numerically stable than using a plain `Sigmoid`
followed by a `BCELoss` as, by combining the operations into one layer,
we take advantage of the log-sum-exp trick for numerical stability.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_n \left[ y_n \cdot \log \sigma(x_n)
+ (1 - y_n) \cdot \log (1 - \sigma(x_n)) \right],
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
This is used for measuring the error of a reconstruction in for example
an auto-encoder. Note that the targets `t[i]` should be numbers
between 0 and 1.
It's possible to trade off recall and precision by adding weights to positive examples.
In the case of multi-label classification the loss can be described as:
.. math::
\ell_c(x, y) = L_c = \{l_{1,c},\dots,l_{N,c}\}^\top, \quad
l_{n,c} = - w_{n,c} \left[ p_c y_{n,c} \cdot \log \sigma(x_{n,c})
+ (1 - y_{n,c}) \cdot \log (1 - \sigma(x_{n,c})) \right],
where :math:`c` is the class number (:math:`c > 1` for multi-label binary classification,
:math:`c = 1` for single-label binary classification),
:math:`n` is the number of the sample in the batch and
:math:`p_c` is the weight of the positive answer for the class :math:`c`.
:math:`p_c > 1` increases the recall, :math:`p_c < 1` increases the precision.
For example, if a dataset contains 100 positive and 300 negative examples of a single class,
then `pos_weight` for the class should be equal to :math:`\frac{300}{100}=3`.
The loss would act as if the dataset contains :math:`3\times 100=300` positive examples.
Examples::
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10
>>> output = torch.full([10, 64], 0.999) # A prediction (logit)
>>> pos_weight = torch.ones([64]) # All weights are equal to 1
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
>>> criterion(output, target) # -log(sigmoid(0.999))
tensor(0.3135)
Args:
weight (Tensor, optional): a manual rescaling weight given to the loss
of each batch element. If given, has to be a Tensor of size `nbatch`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
pos_weight (Tensor, optional): a weight of positive examples.
Must be a vector with length equal to the number of classes.
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same
shape as input.
Examples::
>>> loss = nn.BCEWithLogitsLoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ['weight', 'pos_weight', 'reduction']
def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None):
super(BCEWithLogitsLoss, self).__init__(size_average, reduce, reduction)
self.register_buffer('weight', weight)
self.register_buffer('pos_weight', pos_weight)
@weak_script_method
def forward(self, input, target):
return F.binary_cross_entropy_with_logits(input, target,
self.weight,
pos_weight=self.pos_weight,
reduction=self.reduction)
[docs]@weak_module
class HingeEmbeddingLoss(_Loss):
r"""Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`
(containing 1 or -1).
This is usually used for measuring whether two inputs are similar or
dissimilar, e.g. using the L1 pairwise distance as :math:`x`, and is typically
used for learning nonlinear embeddings or semi-supervised learning.
The loss function for :math:`n`-th sample in the mini-batch is
.. math::
l_n = \begin{cases}
x_n, & \text{if}\; y_n = 1,\\
\max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
\end{cases}
and the total loss functions is
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
where :math:`L = \{l_1,\dots,l_N\}^\top`.
Args:
margin (float, optional): Has a default value of `1`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)` where :math:`*` means, any number of dimensions. The sum operation
operates over all the elements.
- Target: :math:`(*)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input
"""
__constants__ = ['margin', 'reduction']
def __init__(self, margin=1.0, size_average=None, reduce=None, reduction='mean'):
super(HingeEmbeddingLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
@weak_script_method
def forward(self, input, target):
return F.hinge_embedding_loss(input, target, margin=self.margin, reduction=self.reduction)
[docs]@weak_module
class MultiLabelMarginLoss(_Loss):
r"""Creates a criterion that optimizes a multi-class multi-classification
hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
and output :math:`y` (which is a 2D `Tensor` of target class indices).
For each sample in the mini-batch:
.. math::
\text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}
where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
:math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
:math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
:math:`y` and :math:`x` must have the same size.
The criterion only considers a contiguous block of non-negative targets that
starts at the front.
This allows for different samples to have variable amounts of target classes.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(C)` or :math:`(N, C)` where `N` is the batch size and `C`
is the number of classes.
- Target: :math:`(C)` or :math:`(N, C)`, label targets padded by -1 ensuring same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
Examples::
>>> loss = nn.MultiLabelMarginLoss()
>>> x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]])
>>> # for target y, only consider labels 3 and 0, not after label -1
>>> y = torch.LongTensor([[3, 0, -1, 1]])
>>> loss(x, y)
>>> # 0.25 * ((1-(0.1-0.2)) + (1-(0.1-0.4)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))
tensor(0.8500)
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction='mean'):
super(MultiLabelMarginLoss, self).__init__(size_average, reduce, reduction)
@weak_script_method
def forward(self, input, target):
return F.multilabel_margin_loss(input, target, reduction=self.reduction)
[docs]@weak_module
class SmoothL1Loss(_Loss):
r"""Creates a criterion that uses a squared term if the absolute
element-wise error falls below 1 and an L1 term otherwise.
It is less sensitive to outliers than the `MSELoss` and in some cases
prevents exploding gradients (e.g. see `Fast R-CNN` paper by Ross Girshick).
Also known as the Huber loss:
.. math::
\text{loss}(x, y) = \frac{1}{n} \sum_{i} z_{i}
where :math:`z_{i}` is given by:
.. math::
z_{i} =
\begin{cases}
0.5 (x_i - y_i)^2, & \text{if } |x_i - y_i| < 1 \\
|x_i - y_i| - 0.5, & \text{otherwise }
\end{cases}
:math:`x` and :math:`y` arbitrary shapes with a total of :math:`n` elements each
the sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if sets ``reduction = 'sum'``.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then
:math:`(N, *)`, same shape as the input
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction='mean'):
super(SmoothL1Loss, self).__init__(size_average, reduce, reduction)
@weak_script_method
def forward(self, input, target):
return F.smooth_l1_loss(input, target, reduction=self.reduction)
[docs]@weak_module
class SoftMarginLoss(_Loss):
r"""Creates a criterion that optimizes a two-class classification
logistic loss between input tensor :math:`x` and target tensor :math:`y`
(containing 1 or -1).
.. math::
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(*)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction='mean'):
super(SoftMarginLoss, self).__init__(size_average, reduce, reduction)
@weak_script_method
def forward(self, input, target):
return F.soft_margin_loss(input, target, reduction=self.reduction)
[docs]@weak_module
class CrossEntropyLoss(_WeightedLoss):
r"""This criterion combines :func:`nn.LogSoftmax` and :func:`nn.NLLLoss` in one single class.
It is useful when training a classification problem with `C` classes.
If provided, the optional argument :attr:`weight` should be a 1D `Tensor`
assigning weight to each of the classes.
This is particularly useful when you have an unbalanced training set.
The `input` is expected to contain raw, unnormalized scores for each class.
`input` has to be a Tensor of size either :math:`(minibatch, C)` or
:math:`(minibatch, C, d_1, d_2, ..., d_K)`
with :math:`K \geq 1` for the `K`-dimensional case (described later).
This criterion expects a class index in the range :math:`[0, C-1]` as the
`target` for each value of a 1D tensor of size `minibatch`; if `ignore_index`
is specified, this criterion also accepts this class index (this index may not
necessarily be in the class range).
The loss can be described as:
.. math::
\text{loss}(x, class) = -\log\left(\frac{\exp(x[class])}{\sum_j \exp(x[j])}\right)
= -x[class] + \log\left(\sum_j \exp(x[j])\right)
or in the case of the :attr:`weight` argument being specified:
.. math::
\text{loss}(x, class) = weight[class] \left(-x[class] + \log\left(\sum_j \exp(x[j])\right)\right)
The losses are averaged across observations for each minibatch.
Can also be used for higher dimension inputs, such as 2D images, by providing
an input of size :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`,
where :math:`K` is the number of dimensions, and a target of appropriate shape
(see below).
Args:
weight (Tensor, optional): a manual rescaling weight given to each class.
If given, has to be a Tensor of size `C`
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets.
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, C)` where `C = number of classes`, or
:math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
in the case of `K`-dimensional loss.
- Target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of
K-dimensional loss.
- Output: scalar.
If :attr:`reduction` is ``'none'``, then the same size as the target:
:math:`(N)`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case
of K-dimensional loss.
Examples::
>>> loss = nn.CrossEntropyLoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.empty(3, dtype=torch.long).random_(5)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ['weight', 'ignore_index', 'reduction']
def __init__(self, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction='mean'):
super(CrossEntropyLoss, self).__init__(weight, size_average, reduce, reduction)
self.ignore_index = ignore_index
@weak_script_method
def forward(self, input, target):
return F.cross_entropy(input, target, weight=self.weight,
ignore_index=self.ignore_index, reduction=self.reduction)
[docs]@weak_module
class MultiLabelSoftMarginLoss(_WeightedLoss):
r"""Creates a criterion that optimizes a multi-label one-versus-all
loss based on max-entropy, between input :math:`x` and target :math:`y` of size
:math:`(N, C)`.
For each sample in the minibatch:
.. math::
loss(x, y) = - \frac{1}{C} * \sum_i y[i] * \log((1 + \exp(-x[i]))^{-1})
+ (1-y[i]) * \log\left(\frac{\exp(-x[i])}{(1 + \exp(-x[i]))}\right)
where :math:`i \in \left\{0, \; \cdots , \; \text{x.nElement}() - 1\right\}`,
:math:`y[i] \in \left\{0, \; 1\right\}`.
Args:
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, C)` where `N` is the batch size and `C` is the number of classes.
- Target: :math:`(N, C)`, label targets padded by -1 ensuring same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
"""
__constants__ = ['weight', 'reduction']
def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean'):
super(MultiLabelSoftMarginLoss, self).__init__(weight, size_average, reduce, reduction)
@weak_script_method
def forward(self, input, target):
return F.multilabel_soft_margin_loss(input, target, weight=self.weight, reduction=self.reduction)
[docs]@weak_module
class CosineEmbeddingLoss(_Loss):
r"""Creates a criterion that measures the loss given input tensors
:math:`x_1`, :math:`x_2` and a `Tensor` label :math:`y` with values 1 or -1.
This is used for measuring whether two inputs are similar or dissimilar,
using the cosine distance, and is typically used for learning nonlinear
embeddings or semi-supervised learning.
The loss function for each sample is:
.. math::
\text{loss}(x, y) =
\begin{cases}
1 - \cos(x_1, x_2), & \text{if } y = 1 \\
\max(0, \cos(x_1, x_2) - \text{margin}), & \text{if } y = -1
\end{cases}
Args:
margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
:math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
default value is :math:`0`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
"""
__constants__ = ['margin', 'reduction']
def __init__(self, margin=0., size_average=None, reduce=None, reduction='mean'):
super(CosineEmbeddingLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
@weak_script_method
def forward(self, input1, input2, target):
return F.cosine_embedding_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)
[docs]@weak_module
class MarginRankingLoss(_Loss):
r"""Creates a criterion that measures the loss given
inputs :math:`x1`, :math:`x2`, two 1D mini-batch `Tensors`,
and a label 1D mini-batch tensor :math:`y` (containing 1 or -1).
If :math:`y = 1` then it assumed the first input should be ranked higher
(have a larger value) than the second input, and vice-versa for :math:`y = -1`.
The loss function for each sample in the mini-batch is:
.. math::
\text{loss}(x, y) = \max(0, -y * (x1 - x2) + \text{margin})
Args:
margin (float, optional): Has a default value of :math:`0`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, D)` where `N` is the batch size and `D` is the size of a sample.
- Target: :math:`(N)`
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
"""
__constants__ = ['margin', 'reduction']
def __init__(self, margin=0., size_average=None, reduce=None, reduction='mean'):
super(MarginRankingLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
@weak_script_method
def forward(self, input1, input2, target):
return F.margin_ranking_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)
[docs]@weak_module
class MultiMarginLoss(_WeightedLoss):
r"""Creates a criterion that optimizes a multi-class classification hinge
loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`) and
output :math:`y` (which is a 1D tensor of target class indices,
:math:`0 \leq y \leq \text{x.size}(1)-1`):
For each mini-batch sample, the loss in terms of the 1D input :math:`x` and scalar
output :math:`y` is:
.. math::
\text{loss}(x, y) = \frac{\sum_i \max(0, \text{margin} - x[y] + x[i]))^p}{\text{x.size}(0)}
where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`
and :math:`i \neq y`.
Optionally, you can give non-equal weighting on the classes by passing
a 1D :attr:`weight` tensor into the constructor.
The loss function then becomes:
.. math::
\text{loss}(x, y) = \frac{\sum_i \max(0, w[y] * (\text{margin} - x[y] + x[i]))^p)}{\text{x.size}(0)}
Args:
p (int, optional): Has a default value of :math:`1`. :math:`1` and :math:`2`
are the only supported values.
margin (float, optional): Has a default value of :math:`1`.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
"""
__constants__ = ['p', 'margin', 'weight', 'reduction']
def __init__(self, p=1, margin=1., weight=None, size_average=None,
reduce=None, reduction='mean'):
super(MultiMarginLoss, self).__init__(weight, size_average, reduce, reduction)
if p != 1 and p != 2:
raise ValueError("only p == 1 and p == 2 supported")
assert weight is None or weight.dim() == 1
self.p = p
self.margin = margin
@weak_script_method
def forward(self, input, target):
return F.multi_margin_loss(input, target, p=self.p, margin=self.margin,
weight=self.weight, reduction=self.reduction)
[docs]@weak_module
class TripletMarginLoss(_Loss):
r"""Creates a criterion that measures the triplet loss given an input
tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
This is used for measuring a relative similarity between samples. A triplet
is composed by `a`, `p` and `n` (i.e., `anchor`, `positive examples` and `negative
examples` respectively). The shapes of all input tensors should be
:math:`(N, D)`.
The distance swap is described in detail in the paper `Learning shallow
convolutional feature descriptors with triplet losses`_ by
V. Balntas, E. Riba et al.
The loss function for each sample in the mini-batch is:
.. math::
L(a, p, n) = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}
where
.. math::
d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p
Args:
margin (float, optional): Default: :math:`1`.
p (int, optional): The norm degree for pairwise distance. Default: :math:`2`.
swap (bool, optional): The distance swap is described in detail in the paper
`Learning shallow convolutional feature descriptors with triplet losses` by
V. Balntas, E. Riba et al. Default: ``False``.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, D)` where :math:`D` is the vector dimension.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
>>> triplet_loss = nn.TripletMarginLoss(margin=1.0, p=2)
>>> input1 = torch.randn(100, 128, requires_grad=True)
>>> input2 = torch.randn(100, 128, requires_grad=True)
>>> input3 = torch.randn(100, 128, requires_grad=True)
>>> output = triplet_loss(input1, input2, input3)
>>> output.backward()
.. _Learning shallow convolutional feature descriptors with triplet losses:
http://www.bmva.org/bmvc/2016/papers/paper119/index.html
"""
__constants__ = ['margin', 'p', 'eps', 'swap', 'reduction']
def __init__(self, margin=1.0, p=2., eps=1e-6, swap=False, size_average=None,
reduce=None, reduction='mean'):
super(TripletMarginLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
self.p = p
self.eps = eps
self.swap = swap
@weak_script_method
def forward(self, anchor, positive, negative):
return F.triplet_margin_loss(anchor, positive, negative, margin=self.margin, p=self.p,
eps=self.eps, swap=self.swap, reduction=self.reduction)
[docs]@weak_module
class CTCLoss(_Loss):
r"""The Connectionist Temporal Classification loss.
Calculates loss between a continuous (unsegmented) time series and a target sequence. CTCLoss sums over the
probability of possible alignments of input to target, producing a loss value which is differentiable
with respect to each input node. The alignment of input to target is assumed to be "many-to-one", which
limits the length of the target sequence such that it must be :math:`\leq` the input length.
**Args:**
**blank** (int, optional): blank label. Default :math:`0`.
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the output losses will be divided by the target lengths and
then the mean over the batch is taken. Default: ``'mean'``
**zero_infinity** (bool, optional):
Whether to zero infinite losses and the associated gradients.
Default: ``False``
Infinite losses mainly occur when the inputs are too short
to be aligned to the targets.
**Inputs:**
**log_probs**: Tensor of size :math:`(T, N, C)`
| :math:`T = \text{input length}`
| :math:`N = \text{batch size}`
| :math:`C = \text{number of classes (including blank)}`
The logarithmized probabilities of the outputs
(e.g. obtained with :func:`torch.nn.functional.log_softmax`).
**targets**: Tensor of size :math:`(N, S)` or :math:`(\text{sum(target_lengths)})`
| :math:`N = \text{batch size}`
| :math:`S = \text{max target length, if shape is } (N, S)`.
| Target sequences. Each element in the target sequence is a class index. Target index
cannot be blank (default=0).
| In the :math:`(N, S)` form, targets are padded to the length of the longest sequence, and stacked.
| In the :math:`(\text{sum(target_lengths)})` form, the targets are assumed to be un-padded and concatenated
within 1 dimension.
**input_lengths**: Tuple or tensor of size :math:`(N)`.
Lengths of the inputs (must each be :math:`\leq T`).
Lengths are specified for each sequence to achieve masking under the
assumption that sequences are padded to equal lengths.
**target_lengths**: Tuple or tensor of size :math:`(N)`.
| Lengths of the targets. Lengths are specified for each sequence to achieve masking under the
assumption that sequences are padded to equal lengths.
| If target shape is :math:`(N,S)`, target_lengths are effectively the stop index
:math:`s_n` for each target sequence, such that ``target_n = targets[n,0:s_n]`` for
each target in a batch. Lengths must each be :math:`\leq S`
| If the targets are given as a 1d tensor that is the concatenation of individual targets,
the target_lengths must add up to the total length of the tensor.
Example::
>>> T = 50 # Input sequence length
>>> C = 20 # Number of classes (excluding blank)
>>> N = 16 # Batch size
>>> S = 30 # Target sequence length of longest target in batch
>>> S_min = 10 # Minimum target length, for demonstration purposes
>>>
>>> # Initialize random batch of input vectors, for *size = (T,N,C)
>>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
>>>
>>> # Initialize random batch of targets (0 = blank, 1:C+1 = classes)
>>> target = torch.randint(low=1, high=C+1, size=(N, S), dtype=torch.long)
>>>
>>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
>>> target_lengths = torch.randint(low=S_min, high=S, size=(N,), dtype=torch.long)
>>> ctc_loss = nn.CTCLoss()
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
>>> loss.backward()
Reference:
A. Graves et al.: Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural Networks:
https://www.cs.toronto.edu/~graves/icml_2006.pdf
.. Note::
In order to use CuDNN, the following must be satisfied: :attr:`targets` must be
in concatenated format, all :attr:`input_lengths` must be `T`. :math:`blank=0`,
:attr:`target_lengths` :math:`\leq 256`, the integer arguments must be of
dtype :attr:`torch.int32`.
The regular implementation uses the (more common in PyTorch) `torch.long` dtype.
.. include:: cudnn_deterministic.rst
"""
__constants__ = ['blank', 'reduction']
def __init__(self, blank=0, reduction='mean', zero_infinity=False):
super(CTCLoss, self).__init__(reduction=reduction)
self.blank = blank
self.zero_infinity = zero_infinity
@weak_script_method
def forward(self, log_probs, targets, input_lengths, target_lengths):
return F.ctc_loss(log_probs, targets, input_lengths, target_lengths, self.blank, self.reduction,
self.zero_infinity)
# TODO: L1HingeEmbeddingCriterion
# TODO: MSECriterion weight
# TODO: ClassSimplexCriterion
```