Getting Started on Intel GPU¶
Hardware Prerequisite¶
Supported OS |
Validated Hardware |
---|---|
Linux |
Intel® Client GPUs / Intel® Data Center GPU Max Series |
Windows |
Intel® Client GPUs |
WSL2 (experimental feature) |
Intel® Client GPUs |
Intel GPUs support (Prototype) is ready in PyTorch* 2.6 for Intel® Client GPUs and Intel® Data Center GPU Max Series on both Linux and Windows, which brings Intel GPUs and the SYCL* software stack into the official PyTorch stack with consistent user experience to embrace more AI application scenarios.
Software Prerequisite¶
To use PyTorch on Intel GPUs, you need to install the Intel GPUs driver first. For installation guide, visit Intel GPUs Driver Installation.
Intel GPU Drivers are sufficient for binary installation, while building from source requires both Intel GPU Drivers and Intel® Deep Learning Essentials. Please refer to PyTorch Installation Prerequisites for Intel GPUs for more information.
Installation¶
Binaries¶
Now that we have Intel GPU Driver installed, use the following commands to install pytorch
, torchvision
, torchaudio
on Linux.
For release wheels
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/xpu
For nightly wheels
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu
From Source¶
Now that we have Intel GPU Driver and Intel® Deep Learning Essentials installed. Follow guides to build pytorch
, torchvision
, torchaudio
from source.
Build from source for torch
refer to PyTorch Installation Build from source.
Build from source for torchvision
refer to Torchvision Installation Build from source.
Build from source for torchaudio
refert to Torchaudio Installation Build from source.
Check availability for Intel GPU¶
To check if your Intel GPU is available, you would typically use the following code:
import torch
torch.xpu.is_available() # torch.xpu is the API for Intel GPU support
If the output is False
, double check driver installation for Intel GPUs.
Minimum Code Change¶
If you are migrating code from cuda
, you would change references from cuda
to xpu
. For example:
# CUDA CODE
tensor = torch.tensor([1.0, 2.0]).to("cuda")
# CODE for Intel GPU
tensor = torch.tensor([1.0, 2.0]).to("xpu")
The following points outline the support and limitations for PyTorch with Intel GPU:
Both training and inference workflows are supported.
Both eager mode and
torch.compile
is supported.Data types such as FP32, BF16, FP16, and Automatic Mixed Precision (AMP) are all supported.
Examples¶
This section contains usage examples for both inference and training workflows.
Inference Examples¶
Here is a few inference workflow examples.
Inference with FP32¶
import torch
import torchvision.models as models
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to("xpu")
data = data.to("xpu")
with torch.no_grad():
model(data)
print("Execution finished")
Inference with AMP¶
import torch
import torchvision.models as models
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to("xpu")
data = data.to("xpu")
with torch.no_grad():
d = torch.rand(1, 3, 224, 224)
d = d.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=True):
model(data)
print("Execution finished")
Inference with torch.compile
¶
import torch
import torchvision.models as models
import time
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
ITERS = 10
model = model.to("xpu")
data = data.to("xpu")
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time before torch.compile for iteration {i}: {(end-start)*1000} ms")
model = torch.compile(model)
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time after torch.compile for iteration {i}: {(end-start)*1000} ms")
print("Execution finished")
Training Examples¶
Here is a few training workflow examples.
Train with FP32¶
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
Train with AMP¶
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
use_amp=True
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
scaler = torch.amp.GradScaler(enabled=use_amp)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=use_amp):
output = model(data)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
Train with torch.compile
¶
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
model = torch.compile(model)
print(f"Initiating training with torch compile")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")