Source code for torch.ao.nn.intrinsic.qat.modules.conv_fused
# mypy: allow-untyped-defs
import math
from typing import ClassVar, Optional, Type
import torch
import torch.ao.nn.intrinsic as nni
import torch.ao.nn.qat as nnqat
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torch.nn.modules.utils import _pair, _single, _triple
from torch.nn.parameter import Parameter
from torch.nn.utils import fuse_conv_bn_weights
__all__ = [
"ConvBn1d",
"ConvBnReLU1d",
"ConvReLU1d",
"ConvBn2d",
"ConvBnReLU2d",
"ConvReLU2d",
"ConvBn3d",
"ConvBnReLU3d",
"ConvReLU3d",
"update_bn_stats",
"freeze_bn_stats",
]
_BN_CLASS_MAP = {
1: nn.BatchNorm1d,
2: nn.BatchNorm2d,
3: nn.BatchNorm3d,
}
class _ConvBnNd(nn.modules.conv._ConvNd, nni._FusedModule):
_version = 2
_FLOAT_MODULE: ClassVar[Type[nn.modules.conv._ConvNd]]
def __init__(
self,
# ConvNd args
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
bias,
padding_mode,
# BatchNormNd args
# num_features: out_channels
eps=1e-05,
momentum=0.1,
# affine: True
# track_running_stats: True
# Args for this module
freeze_bn=False,
qconfig=None,
dim=2,
):
nn.modules.conv._ConvNd.__init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
False,
padding_mode,
)
assert qconfig, "qconfig must be provided for QAT module"
self.qconfig = qconfig
self.freeze_bn = freeze_bn if self.training else True
self.bn = _BN_CLASS_MAP[dim](out_channels, eps, momentum, True, True)
self.weight_fake_quant = self.qconfig.weight()
if bias:
self.bias = Parameter(torch.empty(out_channels))
else:
self.register_parameter("bias", None)
self.reset_bn_parameters()
# this needs to be called after reset_bn_parameters,
# as they modify the same state
if self.training:
if freeze_bn:
self.freeze_bn_stats()
else:
self.update_bn_stats()
else:
self.freeze_bn_stats()
self._enable_slow_path_for_better_numerical_stability = False
def reset_running_stats(self):
self.bn.reset_running_stats()
def reset_bn_parameters(self):
self.bn.reset_running_stats()
init.uniform_(self.bn.weight)
init.zeros_(self.bn.bias)
# note: below is actually for conv, not BN
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def reset_parameters(self):
super().reset_parameters()
def update_bn_stats(self):
self.freeze_bn = False
self.bn.training = True
return self
def freeze_bn_stats(self):
self.freeze_bn = True
self.bn.training = False
return self
def _forward(self, input):
if self._enable_slow_path_for_better_numerical_stability:
return self._forward_slow(input)
return self._forward_approximate(input)
def _forward_approximate(self, input):
"""Approximated method to fuse conv and bn. It requires only one forward pass.
conv_orig = conv / scale_factor where scale_factor = bn.weight / running_std
"""
assert self.bn.running_var is not None
running_std = torch.sqrt(self.bn.running_var + self.bn.eps)
scale_factor = self.bn.weight / running_std
weight_shape = [1] * len(self.weight.shape)
weight_shape[0] = -1
bias_shape = [1] * len(self.weight.shape)
bias_shape[1] = -1
scaled_weight = self.weight_fake_quant(
self.weight * scale_factor.reshape(weight_shape)
)
# using zero bias here since the bias for original conv
# will be added later
if self.bias is not None:
zero_bias = torch.zeros_like(self.bias, dtype=input.dtype)
else:
zero_bias = torch.zeros(
self.out_channels, device=scaled_weight.device, dtype=input.dtype
)
conv = self._conv_forward(input, scaled_weight, zero_bias)
conv_orig = conv / scale_factor.reshape(bias_shape)
if self.bias is not None:
conv_orig = conv_orig + self.bias.reshape(bias_shape)
conv = self.bn(conv_orig)
return conv
def _forward_slow(self, input):
"""
A more accurate but slow method to compute conv bn fusion, following https://arxiv.org/pdf/1806.08342.pdf
It requires two forward passes but handles the case bn.weight == 0
Conv: Y = WX + B_c
Conv without bias: Y0 = WX = Y - B_c, Y = Y0 + B_c
Batch statistics:
mean_Y = Y.mean()
= Y0.mean() + B_c
var_Y = (Y - mean_Y)^2.mean()
= (Y0 - Y0.mean())^2.mean()
BN (r: bn.weight, beta: bn.bias):
Z = r * (Y - mean_Y) / sqrt(var_Y + eps) + beta
= r * (Y0 - Y0.mean()) / sqrt(var_Y + eps) + beta
Fused Conv BN training (std_Y = sqrt(var_Y + eps)):
Z = (r * W / std_Y) * X + r * (B_c - mean_Y) / std_Y + beta
= (r * W / std_Y) * X - r * Y0.mean() / std_Y + beta
Fused Conv BN inference (running_std = sqrt(running_var + eps)):
Z = (r * W / running_std) * X - r * (running_mean - B_c) / running_std + beta
QAT with fused conv bn:
Z_train = fake_quant(r * W / running_std) * X * (running_std / std_Y) - r * Y0.mean() / std_Y + beta
= conv(X, fake_quant(r * W / running_std)) * (running_std / std_Y) - r * Y0.mean() / std_Y + beta
Z_inference = conv(X, fake_quant(r * W / running_std)) - r * (running_mean - B_c) / running_std + beta
"""
assert self.bn.running_var is not None
assert self.bn.running_mean is not None
# using zero bias here since the bias for original conv
# will be added later
zero_bias = torch.zeros(
self.out_channels, device=self.weight.device, dtype=input.dtype
)
weight_shape = [1] * len(self.weight.shape)
weight_shape[0] = -1
bias_shape = [1] * len(self.weight.shape)
bias_shape[1] = -1
if self.bn.training:
# needed to compute batch mean/std
conv_out = self._conv_forward(input, self.weight, zero_bias)
# update bn statistics
with torch.no_grad():
conv_out_bias = (
conv_out
if self.bias is None
else conv_out + self.bias.reshape(bias_shape)
)
self.bn(conv_out_bias)
# fused conv + bn without bias using bn running statistics
running_std = torch.sqrt(self.bn.running_var + self.bn.eps)
scale_factor = self.bn.weight / running_std
scaled_weight = self.weight_fake_quant(
self.weight * scale_factor.reshape(weight_shape)
)
# fused conv without bias for inference: (r * W / running_std) * X
conv_bn = self._conv_forward(input, scaled_weight, zero_bias)
avg_dims = [0] + list(range(2, len(self.weight.shape)))
batch_mean = conv_out.mean(avg_dims)
batch_var = torch.square(conv_out - batch_mean.reshape(bias_shape)).mean(
avg_dims
)
batch_std = torch.sqrt(batch_var + self.bn.eps)
# scale to use batch std in training mode
# conv(X, r * W / std_Y) = conv(X, r * W / running_std) * (running_std / std_Y)
unscale_factor = running_std / batch_std
conv_bn *= unscale_factor.reshape(bias_shape)
fused_mean = batch_mean
fused_std = batch_std
else:
# fused conv + bn without bias using bn running statistics
running_std = torch.sqrt(self.bn.running_var + self.bn.eps)
scale_factor = self.bn.weight / running_std
scaled_weight = self.weight_fake_quant(
self.weight * scale_factor.reshape(weight_shape)
)
# fused conv without bias for inference: (r * W / running_std) * X
conv_bn = self._conv_forward(input, scaled_weight, zero_bias)
fused_mean = self.bn.running_mean - (
self.bias if self.bias is not None else 0
)
fused_std = running_std
# fused bias = beta - r * mean / std
fused_bias = self.bn.bias - self.bn.weight * fused_mean / fused_std
conv_bn += fused_bias.reshape(bias_shape)
# HACK to let conv bias participate in loss to avoid DDP error (parameters
# were not used in producing loss)
if self.bias is not None:
conv_bn += (self.bias - self.bias).reshape(bias_shape)
return conv_bn
def extra_repr(self):
# TODO(jerryzh): extend
return super().extra_repr()
def forward(self, input):
return self._forward(input)
def train(self, mode=True):
"""
Batchnorm's training behavior is using the self.training flag. Prevent
changing it if BN is frozen. This makes sure that calling `model.train()`
on a model with a frozen BN will behave properly.
"""
self.training = mode
if not self.freeze_bn:
for module in self.children():
module.train(mode)
return self
# ===== Serialization version history =====
#
# Version 1/None
# self
# |--- weight : Tensor
# |--- bias : Tensor
# |--- gamma : Tensor
# |--- beta : Tensor
# |--- running_mean : Tensor
# |--- running_var : Tensor
# |--- num_batches_tracked : Tensor
#
# Version 2
# self
# |--- weight : Tensor
# |--- bias : Tensor
# |--- bn : Module
# |--- weight : Tensor (moved from v1.self.gamma)
# |--- bias : Tensor (moved from v1.self.beta)
# |--- running_mean : Tensor (moved from v1.self.running_mean)
# |--- running_var : Tensor (moved from v1.self.running_var)
# |--- num_batches_tracked : Tensor (moved from v1.self.num_batches_tracked)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
version = local_metadata.get("version", None)
if version is None or version == 1:
# BN related parameters and buffers were moved into the BN module for v2
v2_to_v1_names = {
"bn.weight": "gamma",
"bn.bias": "beta",
"bn.running_mean": "running_mean",
"bn.running_var": "running_var",
"bn.num_batches_tracked": "num_batches_tracked",
}
for v2_name, v1_name in v2_to_v1_names.items():
if prefix + v1_name in state_dict:
state_dict[prefix + v2_name] = state_dict[prefix + v1_name]
state_dict.pop(prefix + v1_name)
elif prefix + v2_name in state_dict:
# there was a brief period where forward compatibility
# for this module was broken (between
# https://github.com/pytorch/pytorch/pull/38478
# and https://github.com/pytorch/pytorch/pull/38820)
# and modules emitted the v2 state_dict format while
# specifying that version == 1. This patches the forward
# compatibility issue by allowing the v2 style entries to
# be used.
pass
elif strict:
missing_keys.append(prefix + v2_name)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
r"""Create a qat module from a float module or qparams_dict
Args: `mod` a float module, either produced by torch.ao.quantization utilities
or directly from user
"""
# The ignore is because _FLOAT_MODULE is a TypeVar here where the bound
# has no __name__ (code is fine though)
assert type(mod) == cls._FLOAT_MODULE, (
"qat."
+ cls.__name__
+ ".from_float only works for "
+ cls._FLOAT_MODULE.__name__
)
assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined"
assert mod.qconfig, "Input float module must have a valid qconfig"
qconfig = mod.qconfig
conv, bn = mod[0], mod[1] # type: ignore[index]
qat_convbn = cls(
conv.in_channels,
conv.out_channels,
conv.kernel_size,
conv.stride,
conv.padding,
conv.dilation,
conv.groups,
conv.bias is not None,
conv.padding_mode,
bn.eps,
bn.momentum,
False,
qconfig,
)
qat_convbn.weight = conv.weight
qat_convbn.bias = conv.bias
qat_convbn.bn.weight = bn.weight
qat_convbn.bn.bias = bn.bias
qat_convbn.bn.running_mean = bn.running_mean
qat_convbn.bn.running_var = bn.running_var
# mypy error: Cannot determine type of 'num_batches_tracked'
qat_convbn.bn.num_batches_tracked = bn.num_batches_tracked
return qat_convbn
def to_float(self):
cls = type(self)
conv = cls._FLOAT_CONV_MODULE( # type: ignore[attr-defined]
self.in_channels,
self.out_channels,
self.kernel_size,
self.stride,
self.padding,
self.dilation,
self.groups,
self.bias is not None,
self.padding_mode,
)
conv.weight = torch.nn.Parameter(self.weight.detach())
if self.bias is not None:
conv.bias = torch.nn.Parameter(self.bias.detach())
if cls._FLOAT_BN_MODULE: # type: ignore[attr-defined]
# fuse bn into conv
assert self.bn.running_var is not None and self.bn.running_mean is not None
conv.weight, conv.bias = fuse_conv_bn_weights(
conv.weight,
conv.bias,
self.bn.running_mean,
self.bn.running_var,
self.bn.eps,
self.bn.weight,
self.bn.bias,
)
if cls._FLOAT_RELU_MODULE: # type: ignore[attr-defined]
modules = []
modules.append(conv)
relu = cls._FLOAT_RELU_MODULE() # type: ignore[attr-defined]
modules.append(relu)
conv_relu = cls._FUSED_FLOAT_MODULE(*modules) # type: ignore[attr-defined]
conv_relu.train(self.training)
return conv_relu
else:
conv.train(self.training)
return conv
[docs]class ConvBn1d(_ConvBnNd, nn.Conv1d):
r"""
A ConvBn1d module is a module fused from Conv1d and BatchNorm1d,
attached with FakeQuantize modules for weight,
used in quantization aware training.
We combined the interface of :class:`torch.nn.Conv1d` and
:class:`torch.nn.BatchNorm1d`.
Similar to :class:`torch.nn.Conv1d`, with FakeQuantize modules initialized
to default.
Attributes:
freeze_bn:
weight_fake_quant: fake quant module for weight
"""
_FLOAT_BN_MODULE: ClassVar[Type[nn.BatchNorm1d]] = nn.BatchNorm1d
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.Module]]] = None
_FLOAT_MODULE: ClassVar[Type[nn.Module]] = nni.ConvBn1d # type: ignore[assignment]
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv1d]] = nn.Conv1d
def __init__(
self,
# Conv1d args
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=None,
padding_mode="zeros",
# BatchNorm1d args
# num_features: out_channels
eps=1e-05,
momentum=0.1,
# affine: True
# track_running_stats: True
# Args for this module
freeze_bn=False,
qconfig=None,
):
kernel_size = _single(kernel_size)
stride = _single(stride)
padding = _single(padding)
dilation = _single(dilation)
_ConvBnNd.__init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
False,
_single(0),
groups,
bias,
padding_mode,
eps,
momentum,
freeze_bn,
qconfig,
dim=1,
)
[docs]class ConvBnReLU1d(ConvBn1d):
r"""
A ConvBnReLU1d module is a module fused from Conv1d, BatchNorm1d and ReLU,
attached with FakeQuantize modules for weight,
used in quantization aware training.
We combined the interface of :class:`torch.nn.Conv1d` and
:class:`torch.nn.BatchNorm1d` and :class:`torch.nn.ReLU`.
Similar to `torch.nn.Conv1d`, with FakeQuantize modules initialized to
default.
Attributes:
weight_fake_quant: fake quant module for weight
"""
# base class defines _FLOAT_MODULE as "ConvBn1d"
_FLOAT_MODULE: ClassVar[Type[nn.Module]] = nni.ConvBnReLU1d
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv1d]] = nn.Conv1d
_FLOAT_BN_MODULE: ClassVar[Type[nn.BatchNorm1d]] = nn.BatchNorm1d
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.Module]]] = nn.ReLU
# module class after fusing bn into conv
_FUSED_FLOAT_MODULE: ClassVar[Optional[Type[nn.Module]]] = nni.ConvReLU1d
def __init__(
self,
# Conv1d args
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=None,
padding_mode="zeros",
# BatchNorm1d args
# num_features: out_channels
eps=1e-05,
momentum=0.1,
# affine: True
# track_running_stats: True
# Args for this module
freeze_bn=False,
qconfig=None,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode,
eps,
momentum,
freeze_bn,
qconfig,
)
def forward(self, input):
return F.relu(self._forward(input))
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return super().from_float(mod, use_precomputed_fake_quant)
class ConvReLU1d(nnqat.Conv1d, nni._FusedModule):
r"""A ConvReLU1d module is a fused module of Conv1d and ReLU, attached with
FakeQuantize modules for weight for
quantization aware training.
We combined the interface of :class:`~torch.nn.Conv1d` and
:class:`~torch.nn.BatchNorm1d`.
Attributes:
weight_fake_quant: fake quant module for weight
"""
_FLOAT_MODULE: ClassVar[Type[nni.ConvReLU1d]] = nni.ConvReLU1d # type: ignore[assignment]
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv1d]] = nn.Conv1d
_FLOAT_BN_MODULE: ClassVar[Optional[Type[nn.Module]]] = None
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.Module]]] = nn.ReLU
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode="zeros",
qconfig=None,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=padding_mode,
qconfig=qconfig,
)
assert qconfig, "qconfig must be provided for QAT module"
self.qconfig = qconfig
self.weight_fake_quant = self.qconfig.weight()
def forward(self, input):
return F.relu(
self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias)
)
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return super().from_float(
mod, use_precomputed_fake_quant=use_precomputed_fake_quant
)
[docs]class ConvBn2d(_ConvBnNd, nn.Conv2d):
r"""
A ConvBn2d module is a module fused from Conv2d and BatchNorm2d,
attached with FakeQuantize modules for weight,
used in quantization aware training.
We combined the interface of :class:`torch.nn.Conv2d` and
:class:`torch.nn.BatchNorm2d`.
Similar to :class:`torch.nn.Conv2d`, with FakeQuantize modules initialized
to default.
Attributes:
freeze_bn:
weight_fake_quant: fake quant module for weight
"""
_FLOAT_MODULE: ClassVar[Type[nni.ConvBn2d]] = nni.ConvBn2d # type: ignore[assignment]
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv2d]] = nn.Conv2d
_FLOAT_BN_MODULE: ClassVar[Optional[Type[nn.Module]]] = nn.BatchNorm2d
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.Module]]] = None
def __init__(
self,
# ConvNd args
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=None,
padding_mode="zeros",
# BatchNorm2d args
# num_features: out_channels
eps=1e-05,
momentum=0.1,
# affine: True
# track_running_stats: True
# Args for this module
freeze_bn=False,
qconfig=None,
):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
_ConvBnNd.__init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
False,
_pair(0),
groups,
bias,
padding_mode,
eps,
momentum,
freeze_bn,
qconfig,
dim=2,
)
[docs]class ConvBnReLU2d(ConvBn2d):
r"""
A ConvBnReLU2d module is a module fused from Conv2d, BatchNorm2d and ReLU,
attached with FakeQuantize modules for weight,
used in quantization aware training.
We combined the interface of :class:`torch.nn.Conv2d` and
:class:`torch.nn.BatchNorm2d` and :class:`torch.nn.ReLU`.
Similar to `torch.nn.Conv2d`, with FakeQuantize modules initialized to
default.
Attributes:
weight_fake_quant: fake quant module for weight
"""
# base class defines _FLOAT_MODULE as "ConvBn2d"
_FLOAT_MODULE: ClassVar[Type[nni.ConvBnReLU2d]] = nni.ConvBnReLU2d # type: ignore[assignment]
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv2d]] = nn.Conv2d
_FLOAT_BN_MODULE: ClassVar[Type[nn.BatchNorm2d]] = nn.BatchNorm2d
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.Module]]] = nn.ReLU
# module class after fusing bn into conv
_FUSED_FLOAT_MODULE: ClassVar[Optional[Type[nni.ConvReLU2d]]] = nni.ConvReLU2d
def __init__(
self,
# Conv2d args
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=None,
padding_mode="zeros",
# BatchNorm2d args
# num_features: out_channels
eps=1e-05,
momentum=0.1,
# affine: True
# track_running_stats: True
# Args for this module
freeze_bn=False,
qconfig=None,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode,
eps,
momentum,
freeze_bn,
qconfig,
)
def forward(self, input):
return F.relu(self._forward(input))
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return super().from_float(mod, use_precomputed_fake_quant)
[docs]class ConvReLU2d(nnqat.Conv2d, nni._FusedModule):
r"""A ConvReLU2d module is a fused module of Conv2d and ReLU, attached with
FakeQuantize modules for weight for
quantization aware training.
We combined the interface of :class:`~torch.nn.Conv2d` and
:class:`~torch.nn.BatchNorm2d`.
Attributes:
weight_fake_quant: fake quant module for weight
"""
_FLOAT_MODULE: ClassVar[Type[nn.Module]] = nni.ConvReLU2d # type: ignore[assignment]
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv2d]] = nn.Conv2d
_FLOAT_BN_MODULE: ClassVar[Optional[Type[nn.Module]]] = None
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.Module]]] = nn.ReLU
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode="zeros",
qconfig=None,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=padding_mode,
qconfig=qconfig,
)
assert qconfig, "qconfig must be provided for QAT module"
self.qconfig = qconfig
self.weight_fake_quant = self.qconfig.weight()
def forward(self, input):
return F.relu(
self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias)
)
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return super().from_float(
mod, use_precomputed_fake_quant=use_precomputed_fake_quant
)
[docs]class ConvBn3d(_ConvBnNd, nn.Conv3d):
r"""
A ConvBn3d module is a module fused from Conv3d and BatchNorm3d,
attached with FakeQuantize modules for weight,
used in quantization aware training.
We combined the interface of :class:`torch.nn.Conv3d` and
:class:`torch.nn.BatchNorm3d`.
Similar to :class:`torch.nn.Conv3d`, with FakeQuantize modules initialized
to default.
Attributes:
freeze_bn:
weight_fake_quant: fake quant module for weight
"""
_FLOAT_MODULE: ClassVar[Type[nni.ConvBn3d]] = nni.ConvBn3d # type: ignore[assignment]
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv3d]] = nn.Conv3d
_FLOAT_BN_MODULE: ClassVar[Optional[Type[nn.Module]]] = nn.BatchNorm3d
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.Module]]] = None
def __init__(
self,
# ConvNd args
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=None,
padding_mode="zeros",
# BatchNorm3d args
# num_features: out_channels
eps=1e-05,
momentum=0.1,
# affine: True
# track_running_stats: True
# Args for this module
freeze_bn=False,
qconfig=None,
):
kernel_size = _triple(kernel_size)
stride = _triple(stride)
padding = _triple(padding)
dilation = _triple(dilation)
_ConvBnNd.__init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
False,
_triple(0),
groups,
bias,
padding_mode,
eps,
momentum,
freeze_bn,
qconfig,
dim=3,
)
[docs]class ConvBnReLU3d(ConvBn3d):
r"""
A ConvBnReLU3d module is a module fused from Conv3d, BatchNorm3d and ReLU,
attached with FakeQuantize modules for weight,
used in quantization aware training.
We combined the interface of :class:`torch.nn.Conv3d` and
:class:`torch.nn.BatchNorm3d` and :class:`torch.nn.ReLU`.
Similar to `torch.nn.Conv3d`, with FakeQuantize modules initialized to
default.
Attributes:
weight_fake_quant: fake quant module for weight
"""
_FLOAT_MODULE: ClassVar[Type[nni.ConvBnReLU3d]] = nni.ConvBnReLU3d # type: ignore[assignment]
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv3d]] = nn.Conv3d
_FLOAT_BN_MODULE: ClassVar[Type[nn.BatchNorm3d]] = nn.BatchNorm3d
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.ReLU]]] = nn.ReLU
# module class after fusing bn into conv
_FUSED_FLOAT_MODULE: ClassVar[Optional[Type[nni.ConvReLU3d]]] = nni.ConvReLU3d
def __init__(
self,
# Conv3d args
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=None,
padding_mode="zeros",
# BatchNorm3d args
# num_features: out_channels
eps=1e-05,
momentum=0.1,
# affine: True
# track_running_stats: True
# Args for this module
freeze_bn=False,
qconfig=None,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode,
eps,
momentum,
freeze_bn,
qconfig,
)
def forward(self, input):
return F.relu(ConvBn3d._forward(self, input))
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return super().from_float(
mod, use_precomputed_fake_quant=use_precomputed_fake_quant
)
[docs]class ConvReLU3d(nnqat.Conv3d, nni._FusedModule):
r"""A ConvReLU3d module is a fused module of Conv3d and ReLU, attached with
FakeQuantize modules for weight for
quantization aware training.
We combined the interface of :class:`~torch.nn.Conv3d` and
:class:`~torch.nn.BatchNorm3d`.
Attributes:
weight_fake_quant: fake quant module for weight
"""
_FLOAT_MODULE: ClassVar[Type[nni.ConvReLU3d]] = nni.ConvReLU3d # type: ignore[assignment]
_FLOAT_CONV_MODULE: ClassVar[Type[nn.Conv3d]] = nn.Conv3d
_FLOAT_BN_MODULE: ClassVar[Optional[Type[nn.Module]]] = None
_FLOAT_RELU_MODULE: ClassVar[Optional[Type[nn.Module]]] = nn.ReLU
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode="zeros",
qconfig=None,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=padding_mode,
qconfig=qconfig,
)
assert qconfig, "qconfig must be provided for QAT module"
self.qconfig = qconfig
self.weight_fake_quant = self.qconfig.weight()
def forward(self, input):
return F.relu(
self._conv_forward(input, self.weight_fake_quant(self.weight), self.bias)
)
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return super().from_float(
mod, use_precomputed_fake_quant=use_precomputed_fake_quant
)
[docs]def update_bn_stats(mod):
if type(mod) in {
ConvBnReLU1d,
ConvBnReLU2d,
ConvBnReLU3d,
ConvBn1d,
ConvBn2d,
ConvBn3d,
}:
mod.update_bn_stats()
[docs]def freeze_bn_stats(mod):
if type(mod) in {
ConvBnReLU1d,
ConvBnReLU2d,
ConvBnReLU3d,
ConvBn1d,
ConvBn2d,
ConvBn3d,
}:
mod.freeze_bn_stats()