Shortcuts

RNNTLoss

class torchaudio.transforms.RNNTLoss(blank: int = -1, clamp: float = -1.0, reduction: str = 'mean')[source]

Compute the RNN Transducer loss from Sequence Transduction with Recurrent Neural Networks [Graves, 2012].

This feature supports the following devices: CPU, CUDA This API supports the following properties: Autograd, TorchScript

The RNN Transducer loss extends the CTC loss by defining a distribution over output sequences of all lengths, and by jointly modelling both input-output and output-output dependencies.

Parameters:
  • blank (int, optional) – blank label (Default: -1)

  • clamp (float, optional) – clamp for gradients (Default: -1)

  • reduction (string, optional) – Specifies the reduction to apply to the output: "none" | "mean" | "sum". (Default: "mean")

Example
>>> # Hypothetical values
>>> logits = torch.tensor([[[[0.1, 0.6, 0.1, 0.1, 0.1],
>>>                          [0.1, 0.1, 0.6, 0.1, 0.1],
>>>                          [0.1, 0.1, 0.2, 0.8, 0.1]],
>>>                         [[0.1, 0.6, 0.1, 0.1, 0.1],
>>>                          [0.1, 0.1, 0.2, 0.1, 0.1],
>>>                          [0.7, 0.1, 0.2, 0.1, 0.1]]]],
>>>                       dtype=torch.float32,
>>>                       requires_grad=True)
>>> targets = torch.tensor([[1, 2]], dtype=torch.int)
>>> logit_lengths = torch.tensor([2], dtype=torch.int)
>>> target_lengths = torch.tensor([2], dtype=torch.int)
>>> transform = transforms.RNNTLoss(blank=0)
>>> loss = transform(logits, targets, logit_lengths, target_lengths)
>>> loss.backward()
forward(logits: Tensor, targets: Tensor, logit_lengths: Tensor, target_lengths: Tensor)[source]
Parameters:
  • logits (Tensor) – Tensor of dimension (batch, max seq length, max target length + 1, class) containing output from joiner

  • targets (Tensor) – Tensor of dimension (batch, max target length) containing targets with zero padded

  • logit_lengths (Tensor) – Tensor of dimension (batch) containing lengths of each sequence from encoder

  • target_lengths (Tensor) – Tensor of dimension (batch) containing lengths of targets for each sequence

Returns:

Loss with the reduction option applied. If reduction is "none", then size (batch), otherwise scalar.

Return type:

Tensor

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources