Note
Click here to download the full example code
Audio Datasets¶
Author: Moto Hira
torchaudio
provides easy access to common, publicly accessible
datasets. Please refer to the official documentation for the list of
available datasets.
# When running this tutorial in Google Colab, install the required packages
# with the following.
# !pip install torchaudio
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
1.13.0
0.13.0
Preparing data and utility functions (skip this section)¶
# @title Prepare data and utility functions. {display-mode: "form"}
# @markdown
# @markdown You do not need to look into this cell.
# @markdown Just execute once and you are good to go.
# -------------------------------------------------------------------------------
# Preparation of data and helper functions.
# -------------------------------------------------------------------------------
import os
import matplotlib.pyplot as plt
from IPython.display import Audio, display
_SAMPLE_DIR = "_assets"
YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no")
os.makedirs(YESNO_DATASET_PATH, exist_ok=True)
def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
waveform = waveform.numpy()
num_channels, _ = waveform.shape
figure, axes = plt.subplots(num_channels, 1)
if num_channels == 1:
axes = [axes]
for c in range(num_channels):
axes[c].specgram(waveform[c], Fs=sample_rate)
if num_channels > 1:
axes[c].set_ylabel(f"Channel {c+1}")
if xlim:
axes[c].set_xlim(xlim)
figure.suptitle(title)
plt.show(block=False)
def play_audio(waveform, sample_rate):
waveform = waveform.numpy()
num_channels, _ = waveform.shape
if num_channels == 1:
display(Audio(waveform[0], rate=sample_rate))
elif num_channels == 2:
display(Audio((waveform[0], waveform[1]), rate=sample_rate))
else:
raise ValueError("Waveform with more than 2 channels are not supported.")
Here, we show how to use the
torchaudio.datasets.YESNO
dataset.
dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True)
for i in [1, 3, 5]:
waveform, sample_rate, label = dataset[i]
plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}")
play_audio(waveform, sample_rate)
0%| | 0.00/4.49M [00:00<?, ?B/s]
1%| | 32.0k/4.49M [00:00<00:26, 174kB/s]
4%|4 | 192k/4.49M [00:00<00:07, 579kB/s]
18%|#8 | 832k/4.49M [00:00<00:02, 1.89MB/s]
56%|#####6 | 2.52M/4.49M [00:00<00:00, 5.97MB/s]
98%|#########8| 4.40M/4.49M [00:00<00:00, 8.74MB/s]
100%|##########| 4.49M/4.49M [00:00<00:00, 5.80MB/s]
<IPython.lib.display.Audio object>
<IPython.lib.display.Audio object>
<IPython.lib.display.Audio object>
Total running time of the script: ( 0 minutes 2.048 seconds)