Source code for torchaudio.datasets.musdb_hq
import os
from pathlib import Path
from typing import List, Optional, Tuple, Union
import torch
import torchaudio
from torch.hub import download_url_to_file
from torch.utils.data import Dataset
from torchaudio.datasets.utils import extract_archive
_URL = "https://zenodo.org/record/3338373/files/musdb18hq.zip"
_CHECKSUM = "baac80d0483c61d74b2e5f3be75fa557eec52898339e6aa45c1fa48833c5d21d"
_EXT = ".wav"
_SAMPLE_RATE = 44100
_VALIDATION_SET = [
"Actions - One Minute Smile",
"Clara Berry And Wooldog - Waltz For My Victims",
"Johnny Lokke - Promises & Lies",
"Patrick Talbot - A Reason To Leave",
"Triviul - Angelsaint",
"Alexander Ross - Goodbye Bolero",
"Fergessen - Nos Palpitants",
"Leaf - Summerghost",
"Skelpolu - Human Mistakes",
"Young Griffo - Pennies",
"ANiMAL - Rockshow",
"James May - On The Line",
"Meaxic - Take A Step",
"Traffic Experiment - Sirens",
]
[docs]class MUSDB_HQ(Dataset):
"""*MUSDB_HQ* :cite:`MUSDB18HQ` dataset.
Args:
root (str or Path): Root directory where the dataset's top level directory is found
subset (str): Subset of the dataset to use. Options: [``"train"``, ``"test"``].
sources (List[str] or None, optional): Sources extract data from.
List can contain the following options: [``"bass"``, ``"drums"``, ``"other"``, ``"mixture"``, ``"vocals"``].
If ``None``, dataset consists of tracks except mixture.
(default: ``None``)
split (str or None, optional): Whether to split training set into train and validation set.
If ``None``, no splitting occurs. If ``train`` or ``validation``, returns respective set.
(default: ``None``)
download (bool, optional): Whether to download the dataset if it is not found at root path.
(default: ``False``)
"""
def __init__(
self,
root: Union[str, Path],
subset: str,
sources: Optional[List[str]] = None,
split: Optional[str] = None,
download: bool = False,
) -> None:
self.sources = ["bass", "drums", "other", "vocals"] if not sources else sources
self.split = split
basename = os.path.basename(_URL)
archive = os.path.join(root, basename)
basename = basename.rsplit(".", 2)[0]
if subset not in ["test", "train"]:
raise ValueError("`subset` must be one of ['test', 'train']")
if self.split is not None and self.split not in ["train", "validation"]:
raise ValueError("`split` must be one of ['train', 'validation']")
base_path = os.path.join(root, basename)
self._path = os.path.join(base_path, subset)
if not os.path.isdir(self._path):
if not os.path.isfile(archive):
if not download:
raise RuntimeError("Dataset not found. Please use `download=True` to download")
download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM)
os.makedirs(base_path, exist_ok=True)
extract_archive(archive, base_path)
self.names = self._collect_songs()
def _get_track(self, name, source):
return Path(self._path) / name / f"{source}{_EXT}"
def _load_sample(self, n: int) -> Tuple[torch.Tensor, int, int, str]:
name = self.names[n]
wavs = []
num_frames = None
for source in self.sources:
track = self._get_track(name, source)
wav, sr = torchaudio.load(str(track))
if sr != _SAMPLE_RATE:
raise ValueError(f"expected sample rate {_SAMPLE_RATE}, but got {sr}")
if num_frames is None:
num_frames = wav.shape[-1]
else:
if wav.shape[-1] != num_frames:
raise ValueError("num_frames do not match across sources")
wavs.append(wav)
stacked = torch.stack(wavs)
return stacked, _SAMPLE_RATE, num_frames, name
def _collect_songs(self):
if self.split == "validation":
return _VALIDATION_SET
path = Path(self._path)
names = []
for root, folders, _ in os.walk(path, followlinks=True):
root = Path(root)
if root.name.startswith(".") or folders or root == path:
continue
name = str(root.relative_to(path))
if self.split and name in _VALIDATION_SET:
continue
names.append(name)
return sorted(names)
[docs] def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, int, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
Tensor:
Waveform
int:
Sample rate
int:
Num frames
str:
Track name
"""
return self._load_sample(n)
def __len__(self) -> int:
return len(self.names)