Shortcuts

gemma_tokenizer

torchtune.models.gemma.gemma_tokenizer(path: str, max_seq_len: Optional[int] = None, prompt_template: Optional[Union[str, Dict[Literal['system', 'user', 'assistant', 'ipython'], Tuple[str, str]]]] = None) GemmaTokenizer[source]

Tokenizer for Gemma.

Parameters:
  • path (str) – path to the tokenizer

  • max_seq_len (Optional[int]) – maximum sequence length for tokenizing a single list of messages, after which the input will be truncated. Default is None.

  • prompt_template (Optional[_TemplateType]) – optional specified prompt template. If a string, it is assumed to be the dotpath of a PromptTemplateInterface class. If a dictionary, it is assumed to be a custom prompt template mapping role to the prepend/append tags.

Returns:

Instantiation of the Gemma tokenizer

Return type:

GemmaTokenizer

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources