Shortcuts

Source code for torchtune.models.gemma._model_builders

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional

from torchtune.models.gemma._component_builders import gemma, lora_gemma
from torchtune.modules import TransformerDecoder

from torchtune.models.gemma._tokenizer import GemmaTokenizer
from torchtune.modules.peft import LORA_ATTN_MODULES
from torchtune.data._prompt_templates import _TemplateType
from torchtune.data._prompt_templates import _get_prompt_template

from functools import partial

"""
Model builders build specific instantiations using component builders. For example
the ``gemma_2b`` model builder uses the ``gemma`` component builder.
"""


[docs]def gemma_2b() -> TransformerDecoder: """ Builder for creating a Gemma 2B model initialized w/ the default 2b parameter values from: https://blog.google/technology/developers/gemma-open-models/ Returns: TransformerDecoder: Instantiation of Gemma 2B model """ return gemma( vocab_size=256_000, num_layers=18, num_heads=8, head_dim=256, num_kv_heads=1, embed_dim=2048, intermediate_dim=16384, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, )
[docs]def gemma_tokenizer(path: str, max_seq_len: Optional[int] = None, prompt_template: Optional[_TemplateType] = None) -> GemmaTokenizer: """ Tokenizer for Gemma. Args: path (str): path to the tokenizer max_seq_len (Optional[int]): maximum sequence length for tokenizing a single list of messages, after which the input will be truncated. Default is None. prompt_template (Optional[_TemplateType]): optional specified prompt template. If a string, it is assumed to be the dotpath of a :class:`~torchtune.data.PromptTemplateInterface` class. If a dictionary, it is assumed to be a custom prompt template mapping role to the prepend/append tags. Returns: GemmaTokenizer: Instantiation of the Gemma tokenizer """ return GemmaTokenizer(path=path, max_seq_len=max_seq_len, prompt_template=_get_prompt_template(prompt_template) if prompt_template is not None else None)
[docs]def lora_gemma_2b( lora_attn_modules: List[LORA_ATTN_MODULES], apply_lora_to_mlp: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False, ) -> TransformerDecoder: """ Builder for creating a Gemma 2B model with LoRA enabled. The Gemma defaults are the same as in :func:`~torchtune.models.gemma.gemma_2b`, while LoRA default params are based on https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43. Args: lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer. Default: False lora_rank (int): rank of each low-rank approximation lora_alpha (float): scaling factor for the low-rank approximation lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0 use_dora (bool): Decompose the LoRA weight into magnitude and direction, as introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353). quantize_base (bool): Whether to quantize base model weights Returns: TransformerDecoder: Instantiation of Gemma 2B model with LoRA applied """ return lora_gemma( lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, vocab_size=256_000, num_layers=18, num_heads=8, head_dim=256, num_kv_heads=1, embed_dim=2048, intermediate_dim=16384, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, )
qlora_gemma_2b = partial(lora_gemma_2b, quantize_base=True) qlora_gemma_2b.__doc__ = """ Builder for creating a Gemma model with QLoRA enabled. Base model weights in linear layers that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314. Please see `lora_gemma_2b` for full API arguments. """
[docs]def gemma_7b() -> TransformerDecoder: """ Builder for creating a Gemma 7B model initialized w/ the default 7b parameter values from: https://blog.google/technology/developers/gemma-open-models/ Returns: TransformerDecoder: Instantiation of Gemma 7B model """ return gemma( vocab_size=256_000, num_layers=28, num_heads=16, head_dim=256, num_kv_heads=16, embed_dim=3072, intermediate_dim=24576, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, )
[docs]def lora_gemma_7b( lora_attn_modules: List[LORA_ATTN_MODULES], apply_lora_to_mlp: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False, ) -> TransformerDecoder: """ Builder for creating a Gemma 7B model with LoRA enabled. The Gemma defaults are the same as in :func:`~torchtune.models.gemma.gemma_7b`, while LoRA default params are based on https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43. Args: lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer. Default: False lora_rank (int): rank of each low-rank approximation lora_alpha (float): scaling factor for the low-rank approximation lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0 use_dora (bool): Decompose the LoRA weight into magnitude and direction, as introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353). quantize_base (bool): Whether to quantize base model weights Returns: TransformerDecoder: Instantiation of Gemma 7B model with LoRA applied """ return lora_gemma( lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, vocab_size=256_000, num_layers=28, num_heads=16, head_dim=256, num_kv_heads=16, embed_dim=3072, intermediate_dim=24576, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, )
qlora_gemma_7b = partial(lora_gemma_7b, quantize_base=True) qlora_gemma_7b.__doc__ = """ Builder for creating a Gemma model with QLoRA enabled. Base model weights in linear layers that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314. Please see `lora_gemma_7b` for full API arguments. """

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources