Modules¶
Standard TorchRec modules represent collections of embedding tables:
EmbeddingBagCollection
is a collection oftorch.nn.EmbeddingBag
EmbeddingCollection
is a collection oftorch.nn.Embedding
These modules are constructed through standardized config classes:
EmbeddingBagConfig
forEmbeddingBagCollection
EmbeddingConfig
forEmbeddingCollection
- class torchrec.modules.embedding_configs.EmbeddingBagConfig(num_embeddings: int, embedding_dim: int, name: str = '', data_type: ~torchrec.types.DataType = DataType.FP32, feature_names: ~typing.List[str] = <factory>, weight_init_max: ~typing.Optional[float] = None, weight_init_min: ~typing.Optional[float] = None, num_embeddings_post_pruning: ~typing.Optional[int] = None, init_fn: ~typing.Optional[~typing.Callable[[~torch.Tensor], ~typing.Optional[~torch.Tensor]]] = None, need_pos: bool = False, pooling: ~torchrec.modules.embedding_configs.PoolingType = PoolingType.SUM)¶
Bases:
BaseEmbeddingConfig
EmbeddingBagConfig is a dataclass that represents a single embedding table, where outputs are meant to be pooled.
- Parameters:
pooling (PoolingType) – pooling type.
- class torchrec.modules.embedding_configs.EmbeddingConfig(num_embeddings: int, embedding_dim: int, name: str = '', data_type: ~torchrec.types.DataType = DataType.FP32, feature_names: ~typing.List[str] = <factory>, weight_init_max: ~typing.Optional[float] = None, weight_init_min: ~typing.Optional[float] = None, num_embeddings_post_pruning: ~typing.Optional[int] = None, init_fn: ~typing.Optional[~typing.Callable[[~torch.Tensor], ~typing.Optional[~torch.Tensor]]] = None, need_pos: bool = False)¶
Bases:
BaseEmbeddingConfig
EmbeddingConfig is a dataclass that represents a single embedding table.
- class torchrec.modules.embedding_configs.BaseEmbeddingConfig(num_embeddings: int, embedding_dim: int, name: str = '', data_type: ~torchrec.types.DataType = DataType.FP32, feature_names: ~typing.List[str] = <factory>, weight_init_max: ~typing.Optional[float] = None, weight_init_min: ~typing.Optional[float] = None, num_embeddings_post_pruning: ~typing.Optional[int] = None, init_fn: ~typing.Optional[~typing.Callable[[~torch.Tensor], ~typing.Optional[~torch.Tensor]]] = None, need_pos: bool = False)¶
Base class for embedding configs.
- Parameters:
num_embeddings (int) – number of embeddings.
embedding_dim (int) – embedding dimension.
name (str) – name of the embedding table.
data_type (DataType) – data type of the embedding table.
feature_names (List[str]) – list of feature names.
weight_init_max (Optional[float]) – max value for weight initialization.
weight_init_min (Optional[float]) – min value for weight initialization.
num_embeddings_post_pruning (Optional[int]) – number of embeddings after pruning for inference. If None, no pruning is applied.
init_fn (Optional[Callable[[torch.Tensor], Optional[torch.Tensor]]]) – init function for embedding weights.
need_pos (bool) – whether table is position weighted.
- class torchrec.modules.embedding_modules.EmbeddingBagCollection(tables: List[EmbeddingBagConfig], is_weighted: bool = False, device: Optional[device] = None)¶
EmbeddingBagCollection represents a collection of pooled embeddings (EmbeddingBags).
Note
EmbeddingBagCollection is an unsharded module and is not performance optimized. For performance-sensitive scenarios, consider using the sharded version ShardedEmbeddingBagCollection.
It is callable on arguments representing sparse data in the form of KeyedJaggedTensor with values of the shape (F, B, L[f][i]) where:
F: number of features (keys)
B: batch size
L[f][i]: length of sparse features (potentially distinct for each feature f and batch index i, that is, jagged)
and outputs a KeyedTensor with values with shape (B, D) where:
B: batch size
D: sum of embedding dimensions of all embedding tables, that is, sum([config.embedding_dim for config in tables])
Assuming the argument is a KeyedJaggedTensor J with F features, batch size B and L[f][i] sparse lengths such that J[f][i] is the bag for feature f and batch index i, the output KeyedTensor KT is defined as follows: KT[i] = torch.cat([emb[f](J[f][i]) for f in J.keys()]) where emb[f] is the EmbeddingBag corresponding to the feature f.
Note that J[f][i] is a variable-length list of integer values (a bag), and emb[f](J[f][i]) is pooled embedding produced by reducing the embeddings of each of the values in J[f][i] using the EmbeddingBag emb[f]’s mode (default is the mean).
- Parameters:
tables (List[EmbeddingBagConfig]) – list of embedding tables.
is_weighted (bool) – whether input KeyedJaggedTensor is weighted.
device (Optional[torch.device]) – default compute device.
Example:
table_0 = EmbeddingBagConfig( name="t1", embedding_dim=3, num_embeddings=10, feature_names=["f1"] ) table_1 = EmbeddingBagConfig( name="t2", embedding_dim=4, num_embeddings=10, feature_names=["f2"] ) ebc = EmbeddingBagCollection(tables=[table_0, table_1]) # i = 0 i = 1 i = 2 <-- batch indices # "f1" [0,1] None [2] # "f2" [3] [4] [5,6,7] # ^ # features features = KeyedJaggedTensor( keys=["f1", "f2"], values=torch.tensor([0, 1, 2, # feature 'f1' 3, 4, 5, 6, 7]), # feature 'f2' # i = 1 i = 2 i = 3 <--- batch indices offsets=torch.tensor([ 0, 2, 2, # 'f1' bags are values[0:2], values[2:2], and values[2:3] 3, 4, 5, 8]), # 'f2' bags are values[3:4], values[4:5], and values[5:8] ) pooled_embeddings = ebc(features) print(pooled_embeddings.values()) tensor([ # f1 pooled embeddings f2 pooled embeddings # from bags (dim. 3) from bags (dim. 4) [-0.8899, -0.1342, -1.9060, -0.0905, -0.2814, -0.9369, -0.7783], # i = 0 [ 0.0000, 0.0000, 0.0000, 0.1598, 0.0695, 1.3265, -0.1011], # i = 1 [-0.4256, -1.1846, -2.1648, -1.0893, 0.3590, -1.9784, -0.7681]], # i = 2 grad_fn=<CatBackward0>) print(pooled_embeddings.keys()) ['f1', 'f2'] print(pooled_embeddings.offset_per_key()) tensor([0, 3, 7]) # embeddings have dimensions 3 and 4, so embeddings are at [0, 3) and [3, 7).
- property device: device¶
Returns: torch.device: The compute device.
- embedding_bag_configs() List[EmbeddingBagConfig] ¶
- Returns:
The embedding bag configs.
- Return type:
List[EmbeddingBagConfig]
- forward(features: KeyedJaggedTensor) KeyedTensor ¶
Run the EmbeddingBagCollection forward pass. This method takes in a KeyedJaggedTensor and returns a KeyedTensor, which is the result of pooling the embeddings for each feature.
- Parameters:
features (KeyedJaggedTensor) – Input KJT
- Returns:
KeyedTensor
- is_weighted() bool ¶
- Returns:
Whether the EmbeddingBagCollection is weighted.
- Return type:
bool
- reset_parameters() None ¶
Reset the parameters of the EmbeddingBagCollection. Parameter values are intiialized based on the init_fn of each EmbeddingBagConfig if it exists.
- class torchrec.modules.embedding_modules.EmbeddingCollection(tables: List[EmbeddingConfig], device: Optional[device] = None, need_indices: bool = False)¶
EmbeddingCollection represents a collection of non-pooled embeddings.
Note
EmbeddingCollection is an unsharded module and is not performance optimized. For performance-sensitive scenarios, consider using the sharded version ShardedEmbeddingCollection.
It is callable on arguments representing sparse data in the form of KeyedJaggedTensor with values of the shape (F, B, L[f][i]) where:
F: number of features (keys)
B: batch size
L[f][i]: length of sparse features (potentially distinct for each feature f and batch index i, that is, jagged)
and outputs a result of type Dict[Feature, JaggedTensor], where result[f] is a JaggedTensor with shape (EB[f], D[f]) where:
EB[f]: a “expanded batch size” for feature f equal to the sum of the lengths of its bag values, that is, sum([len(J[f][i]) for i in range(B)]).
D[f]: is the embedding dimension of feature f.
- Parameters:
tables (List[EmbeddingConfig]) – list of embedding tables.
device (Optional[torch.device]) – default compute device.
need_indices (bool) – if we need to pass indices to the final lookup dict.
Example:
e1_config = EmbeddingConfig( name="t1", embedding_dim=3, num_embeddings=10, feature_names=["f1"] ) e2_config = EmbeddingConfig( name="t2", embedding_dim=3, num_embeddings=10, feature_names=["f2"] ) ec = EmbeddingCollection(tables=[e1_config, e2_config]) # 0 1 2 <-- batch # 0 [0,1] None [2] # 1 [3] [4] [5,6,7] # ^ # feature features = KeyedJaggedTensor.from_offsets_sync( keys=["f1", "f2"], values=torch.tensor([0, 1, 2, # feature 'f1' 3, 4, 5, 6, 7]), # feature 'f2' # i = 1 i = 2 i = 3 <--- batch indices offsets=torch.tensor([ 0, 2, 2, # 'f1' bags are values[0:2], values[2:2], and values[2:3] 3, 4, 5, 8]), # 'f2' bags are values[3:4], values[4:5], and values[5:8] ) feature_embeddings = ec(features) print(feature_embeddings['f2'].values()) tensor([ # embedding for value 3 in f2 bag values[3:4]: [-0.2050, 0.5478, 0.6054], # embedding for value 4 in f2 bag values[4:5]: [ 0.7352, 0.3210, -3.0399], # embedding for values 5, 6, 7 in f2 bag values[5:8]: [ 0.1279, -0.1756, -0.4130], [ 0.7519, -0.4341, -0.0499], [ 0.9329, -1.0697, -0.8095], ], grad_fn=<EmbeddingBackward>)
- property device: device¶
Returns: torch.device: The compute device.
- embedding_configs() List[EmbeddingConfig] ¶
- Returns:
The embedding configs.
- Return type:
List[EmbeddingConfig]
- embedding_dim() int ¶
- Returns:
The embedding dimension.
- Return type:
int
- embedding_names_by_table() List[List[str]] ¶
- Returns:
The embedding names by table.
- Return type:
List[List[str]]
- forward(features: KeyedJaggedTensor) Dict[str, JaggedTensor] ¶
Run the EmbeddingBagCollection forward pass. This method takes in a KeyedJaggedTensor and returns a Dict[str, JaggedTensor], which is the result of the individual embeddings for each feature.
- Parameters:
features (KeyedJaggedTensor) – KJT of form [F X B X L].
- Returns:
Dict[str, JaggedTensor]
- need_indices() bool ¶
- Returns:
Whether the EmbeddingCollection needs indices.
- Return type:
bool
- reset_parameters() None ¶
Reset the parameters of the EmbeddingCollection. Parameter values are intiialized based on the init_fn of each EmbeddingConfig if it exists.