GAE¶
- class torchrl.objectives.value.GAE(*args, **kwargs)[source]¶
A class wrapper around the generalized advantage estimate functional.
Refer to “HIGH-DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION” https://arxiv.org/pdf/1506.02438.pdf for more context.
- Parameters:
gamma (scalar) – exponential mean discount.
lmbda (scalar) – trajectory discount.
value_network (TensorDictModule) – value operator used to retrieve the value estimates.
average_gae (bool) – if
True
, the resulting GAE values will be standardized. Default isFalse
.differentiable (bool, optional) –
if
True
, gradients are propagated through the computation of the value function. Default isFalse
.Note
The proper way to make the function call non-differentiable is to decorate it in a torch.no_grad() context manager/decorator or pass detached parameters for functional modules.
vectorized (bool, optional) – whether to use the vectorized version of the lambda return. Default is True if not compiling.
skip_existing (bool, optional) – if
True
, the value network will skip modules which outputs are already present in the tensordict. Defaults toNone
, i.e., the value oftensordict.nn.skip_existing()
is not affected. Defaults to “state_value”.advantage_key (str or tuple of str, optional) – [Deprecated] the key of the advantage entry. Defaults to
"advantage"
.value_target_key (str or tuple of str, optional) – [Deprecated] the key of the advantage entry. Defaults to
"value_target"
.value_key (str or tuple of str, optional) – [Deprecated] the value key to read from the input tensordict. Defaults to
"state_value"
.shifted (bool, optional) – if
True
, the value and next value are estimated with a single call to the value network. This is faster but is only valid whenever (1) the"next"
value is shifted by only one time step (which is not the case with multi-step value estimation, for instance) and (2) when the parameters used at timet
andt+1
are identical (which is not the case when target parameters are to be used). Defaults toFalse
.device (torch.device, optional) – the device where the buffers will be instantiated. Defaults to
torch.get_default_device()
.time_dim (int, optional) – the dimension corresponding to the time in the input tensordict. If not provided, defaults to the dimension marked with the
"time"
name if any, and to the last dimension otherwise. Can be overridden during a call tovalue_estimate()
. Negative dimensions are considered with respect to the input tensordict.
GAE will return an
"advantage"
entry containing the advantage value. It will also return a"value_target"
entry with the return value that is to be used to train the value network. Finally, ifgradient_mode
isTrue
, an additional and differentiable"value_error"
entry will be returned, which simply represents the difference between the return and the value network output (i.e. an additional distance loss should be applied to that signed value).Note
As other advantage functions do, if the
value_key
is already present in the input tensordict, the GAE module will ignore the calls to the value network (if any) and use the provided value instead.- forward(tensordict: TensorDictBase = None, *, params: Optional[List[Tensor]] = None, target_params: Optional[List[Tensor]] = None, time_dim: int | None = None) TensorDictBase [source]¶
Computes the GAE given the data in tensordict.
If a functional module is provided, a nested TensorDict containing the parameters (and if relevant the target parameters) can be passed to the module.
- Parameters:
tensordict (TensorDictBase) – A TensorDict containing the data (an observation key,
"action"
,("next", "reward")
,("next", "done")
,("next", "terminated")
, and"next"
tensordict state as returned by the environment) necessary to compute the value estimates and the GAE. The data passed to this module should be structured as[*B, T, *F]
whereB
are the batch size,T
the time dimension andF
the feature dimension(s). The tensordict must have shape[*B, T]
.- Keyword Arguments:
params (TensorDictBase, optional) – A nested TensorDict containing the params to be passed to the functional value network module.
target_params (TensorDictBase, optional) – A nested TensorDict containing the target params to be passed to the functional value network module.
time_dim (int, optional) – the dimension corresponding to the time in the input tensordict. If not provided, defaults to the dimension marked with the
"time"
name if any, and to the last dimension otherwise. Negative dimensions are considered with respect to the input tensordict.
- Returns:
An updated TensorDict with an advantage and a value_error keys as defined in the constructor.
Examples
>>> from tensordict import TensorDict >>> value_net = TensorDictModule( ... nn.Linear(3, 1), in_keys=["obs"], out_keys=["state_value"] ... ) >>> module = GAE( ... gamma=0.98, ... lmbda=0.94, ... value_network=value_net, ... differentiable=False, ... ) >>> obs, next_obs = torch.randn(2, 1, 10, 3) >>> reward = torch.randn(1, 10, 1) >>> done = torch.zeros(1, 10, 1, dtype=torch.bool) >>> terminated = torch.zeros(1, 10, 1, dtype=torch.bool) >>> tensordict = TensorDict({"obs": obs, "next": {"obs": next_obs}, "done": done, "reward": reward, "terminated": terminated}, [1, 10]) >>> _ = module(tensordict) >>> assert "advantage" in tensordict.keys()
The module supports non-tensordict (i.e. unpacked tensordict) inputs too:
Examples
>>> value_net = TensorDictModule( ... nn.Linear(3, 1), in_keys=["obs"], out_keys=["state_value"] ... ) >>> module = GAE( ... gamma=0.98, ... lmbda=0.94, ... value_network=value_net, ... differentiable=False, ... ) >>> obs, next_obs = torch.randn(2, 1, 10, 3) >>> reward = torch.randn(1, 10, 1) >>> done = torch.zeros(1, 10, 1, dtype=torch.bool) >>> terminated = torch.zeros(1, 10, 1, dtype=torch.bool) >>> advantage, value_target = module(obs=obs, next_reward=reward, next_done=done, next_obs=next_obs, next_terminated=terminated)
- value_estimate(tensordict, params: Optional[TensorDictBase] = None, target_params: Optional[TensorDictBase] = None, time_dim: Optional[int] = None, **kwargs)[source]¶
Gets a value estimate, usually used as a target value for the value network.
If the state value key is present under
tensordict.get(("next", self.tensor_keys.value))
then this value will be used without recurring to the value network.- Parameters:
tensordict (TensorDictBase) – the tensordict containing the data to read.
target_params (TensorDictBase, optional) – A nested TensorDict containing the target params to be passed to the functional value network module.
next_value (torch.Tensor, optional) – the value of the next state or state-action pair. Exclusive with
target_params
.**kwargs – the keyword arguments to be passed to the value network.
Returns: a tensor corresponding to the state value.