Shortcuts

ProbabilisticActor

class torchrl.modules.tensordict_module.ProbabilisticActor(*args, **kwargs)[source]

General class for probabilistic actors in RL.

The Actor class comes with default values for the out_keys ([“action”]) and if the spec is provided but not as a Composite object, it will be automatically translated into spec = Composite(action=spec)

Parameters:
  • module (nn.Module) – a torch.nn.Module used to map the input to the output parameter space.

  • in_keys (str or iterable of str or dict) – key(s) that will be read from the input TensorDict and used to build the distribution. Importantly, if it’s an iterable of string or a string, those keys must match the keywords used by the distribution class of interest, e.g. "loc" and "scale" for the Normal distribution and similar. If in_keys is a dictionary,, the keys are the keys of the distribution and the values are the keys in the tensordict that will get match to the corresponding distribution keys.

  • out_keys (str or iterable of str) – keys where the sampled values will be written. Importantly, if these keys are found in the input TensorDict, the sampling step will be skipped.

  • spec (TensorSpec, optional) – keyword-only argument containing the specs of the output tensor. If the module outputs multiple output tensors, spec characterize the space of the first output tensor.

  • safe (bool) – keyword-only argument. if True, the value of the output is checked against the input spec. Out-of-domain sampling can occur because of exploration policies or numerical under/overflow issues. If this value is out of bounds, it is projected back onto the desired space using the TensorSpec.project method. Default is False.

  • default_interaction_type (tensordict.nn.InteractionType, optional) –

    keyword-only argument. Default method to be used to retrieve the output value. Should be one of: InteractionType.MODE, InteractionType.DETERMINISTIC, InteractionType.MEDIAN, InteractionType.MEAN or InteractionType.RANDOM (in which case the value is sampled randomly from the distribution). TorchRL’s ExplorationType class is a proxy to InteractionType. Defaults to InteractionType.DETERMINISTIC.

    Note

    When a sample is drawn, the ProbabilisticActor instance will first look for the interaction mode dictated by the interaction_type() global function. If this returns None (its default value), then the default_interaction_type of the ProbabilisticTDModule instance will be used. Note that DataCollectorBase instances will use set_interaction_type to tensordict.nn.InteractionType.RANDOM by default.

  • distribution_class (Type, optional) –

    keyword-only argument. A torch.distributions.Distribution class to be used for sampling. Default is tensordict.nn.distributions.Delta.

    Note

    if distribution_class is of type CompositeDistribution, the keys will be inferred from the distribution_map / name_map keyword arguments of that distribution. If this distribution is used with another constructor (e.g., partial or lambda function) then the out_keys will need to be provided explicitly. Note also that actions will __not__ be prefixed with an "action" key, see the example below on how this can be achieved with a ProbabilisticActor.

  • distribution_kwargs (dict, optional) – keyword-only argument. Keyword-argument pairs to be passed to the distribution.

  • return_log_prob (bool, optional) – keyword-only argument. If True, the log-probability of the distribution sample will be written in the tensordict with the key ‘sample_log_prob’. Default is False.

  • cache_dist (bool, optional) – keyword-only argument. EXPERIMENTAL: if True, the parameters of the distribution (i.e. the output of the module) will be written to the tensordict along with the sample. Those parameters can be used to re-compute the original distribution later on (e.g. to compute the divergence between the distribution used to sample the action and the updated distribution in PPO). Default is False.

  • n_empirical_estimate (int, optional) – keyword-only argument. Number of samples to compute the empirical mean when it is not available. Defaults to 1000.

Examples

>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule
>>> from torchrl.data import Bounded
>>> from torchrl.modules import ProbabilisticActor, NormalParamExtractor, TanhNormal
>>> td = TensorDict({"observation": torch.randn(3, 4)}, [3,])
>>> action_spec = Bounded(shape=torch.Size([4]),
...    low=-1, high=1)
>>> module = nn.Sequential(torch.nn.Linear(4, 8), NormalParamExtractor())
>>> tensordict_module = TensorDictModule(module, in_keys=["observation"], out_keys=["loc", "scale"])
>>> td_module = ProbabilisticActor(
...    module=tensordict_module,
...    spec=action_spec,
...    in_keys=["loc", "scale"],
...    distribution_class=TanhNormal,
...    )
>>> td = td_module(td)
>>> td
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        loc: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        observation: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        scale: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([3]),
    device=None,
    is_shared=False)

Probabilistic actors also support compound actions through the tensordict.nn.CompositeDistribution class. This distribution takes a tensordict as input (typically “params”) and reads it as a whole: the content of this tensordict is the input to the distributions contained in the compound one.

Examples

>>> from tensordict import TensorDict
>>> from tensordict.nn import CompositeDistribution, TensorDictModule
>>> from torchrl.modules import ProbabilisticActor
>>> from torch import nn, distributions as d
>>> import torch
>>>
>>> class Module(nn.Module):
...     def forward(self, x):
...         return x[..., :3], x[..., 3:6], x[..., 6:]
>>> module = TensorDictModule(Module(),
...                           in_keys=["x"],
...                           out_keys=[("params", "normal", "loc"),
...                              ("params", "normal", "scale"),
...                              ("params", "categ", "logits")])
>>> actor = ProbabilisticActor(module,
...                            in_keys=["params"],
...                            distribution_class=CompositeDistribution,
...                            distribution_kwargs={"distribution_map": {
...                                 "normal": d.Normal, "categ": d.Categorical}}
...                           )
>>> data = TensorDict({"x": torch.rand(10)}, [])
>>> actor(data)
TensorDict(
    fields={
        categ: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False),
        normal: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
        params: TensorDict(
            fields={
                categ: TensorDict(
                    fields={
                        logits: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.float32, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                normal: TensorDict(
                    fields={
                        loc: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
                        scale: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False)},
            batch_size=torch.Size([]),
            device=None,
            is_shared=False),
        x: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

Using a probabilistic actor with a composite distribution can be achieved using the following example code:

Examples

>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict.nn import CompositeDistribution
>>> from tensordict.nn import TensorDictModule
>>> from torch import distributions as d
>>> from torch import nn
>>>
>>> from torchrl.modules import ProbabilisticActor
>>>
>>>
>>> class Module(nn.Module):
...     def forward(self, x):
...         return x[..., :3], x[..., 3:6], x[..., 6:]
...
>>>
>>> module = TensorDictModule(Module(),
...                           in_keys=["x"],
...                           out_keys=[
...                               ("params", "normal", "loc"), ("params", "normal", "scale"), ("params", "categ", "logits")
...                           ])
>>> actor = ProbabilisticActor(module,
...                            in_keys=["params"],
...                            distribution_class=CompositeDistribution,
...                            distribution_kwargs={"distribution_map": {"normal": d.Normal, "categ": d.Categorical},
...                                                 "name_map": {"normal": ("action", "normal"),
...                                                              "categ": ("action", "categ")}}
...                            )
>>> print(actor.out_keys)
[('params', 'normal', 'loc'), ('params', 'normal', 'scale'), ('params', 'categ', 'logits'), ('action', 'normal'), ('action', 'categ')]
>>>
>>> data = TensorDict({"x": torch.rand(10)}, [])
>>> module(data)
>>> print(actor(data))
TensorDict(
    fields={
        action: TensorDict(
            fields={
                categ: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False),
                normal: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)},
            batch_size=torch.Size([]),
            device=None,
            is_shared=False),
        params: TensorDict(
            fields={
                categ: TensorDict(
                    fields={
                        logits: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.float32, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False),
                normal: TensorDict(
                    fields={
                        loc: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False),
                        scale: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=None,
                    is_shared=False)},
            batch_size=torch.Size([]),
            device=None,
            is_shared=False),
        x: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources