KLRewardTransform¶
- class torchrl.envs.transforms.KLRewardTransform(actor: ProbabilisticTensorDictModule, coef=1.0, in_keys=None, out_keys=None, requires_grad=False)[source]¶
A transform to add a KL[pi_current||pi_0] correction term to the reward.
This transform is used to constrain the policy to remain close to its original configuration which limits overfitting when fine-tuning using RLHF.
- Parameters:
actor (ProbabilisticTensorDictModule) – a probabilistic actor. It must have the following features: it must have a set of input (
in_keys
) and output keys (out_keys
). It must have aget_dist
method that outputs the distribution of the action.coef (
float
) – the coefficient of the KL term. Defaults to1.0
.in_keys (str or list of str/tuples of str) – the input key where the reward should be fetched. Defaults to
"reward"
.out_keys (str or list of str/tuples of str) – the output key where the reward should be written. Defaults to
"reward"
.requires_grad (bool, optional) – if
True
, the frozen parameters will consist of differentiable clones of the original params. Defaults toFalse
.
Note
If the parameters are not differentiable (default), they will not follow the module when dtype or device casting operations will be called (such as
cuda()
,to()
etc.). Whenrequires_grad=True
, casting operations will work as expected.Examples
>>> from torchrl.envs.libs.gym import GymEnv >>> from torchrl.envs import TransformedEnv >>> from tensordict.nn import TensorDictModule as Mod, NormalParamExtractor >>> from torchrl.modules import ProbabilisticActor >>> from tensordict import TensorDict >>> from torchrl.modules.distributions import TanhNormal >>> from torch import nn >>> base_env = GymEnv("Pendulum-v1") >>> n_obs = base_env.observation_spec["observation"].shape[-1] >>> n_act = base_env.action_spec.shape[-1] >>> module = Mod( ... nn.Sequential(nn.Linear(n_obs, n_act * 2), NormalParamExtractor()), ... in_keys=["observation"], ... out_keys=["loc", "scale"], ... ) >>> actor = ProbabilisticActor( ... module, ... in_keys=["loc", "scale"], ... distribution_class=TanhNormal, ... return_log_prob=True, ... ) >>> transform = KLRewardTransform(actor, out_keys="reward_kl") >>> env = TransformedEnv(base_env, transform) >>> with torch.no_grad(): ... # modify the actor parameters ... _ = TensorDict(dict(actor.named_parameters()), []).apply_(lambda x: x.data.copy_(x.data + 1)) ... td = env.rollout(3, actor) >>> # check that rewards have been modified >>> assert (td.get(("next", "reward")) != td.get(("next", "reward_kl"))).all()
Note
Because the KL formulat is not always available and the parameters of the original distribution may not have been recorded, we use a stochastic estimate of the KL divergence.
- forward(tensordict: TensorDictBase) TensorDictBase ¶
Reads the input tensordict, and for the selected keys, applies the transform.
- transform_output_spec(output_spec: Composite) Composite [source]¶
Transforms the output spec such that the resulting spec matches transform mapping.
This method should generally be left untouched. Changes should be implemented using
transform_observation_spec()
,transform_reward_spec()
andtransformfull_done_spec()
. :param output_spec: spec before the transform :type output_spec: TensorSpec- Returns:
expected spec after the transform